单光子探测器SPAD恒温控制系统设计
Constant temperature control system design of single photon detector SPAD
查看参考文献12篇
文摘
|
分析了单光子雪崩光电二极管(SPAD)探测器雪崩电压的温度特性,得出SPAD的雪崩电压随温度变化约为0.7 V/℃,需要设计恒温控制电路保证SPAD的正常工作。从最优温度控制策略的角度,选用MAX1978温度控制芯片进行电路设计实现SPAD的温度恒定。简要介绍了恒温控制系统的工作原理及各个组成部分。通过恒温控制电路实验验证了电路的可行性,恒温控制电路可以在1 min内使SPAD的工作环境温度恒定在0.06℃内,温度控制速度和精度均能满足SPAD温度恒定的要求,确保单光子探测器SPAD正常工作,使单光子探测器SPAD具有更好的探测性能。 |
其他语种文摘
|
The temperature characteristics of avalanche voltage of single photon detector SPAD were analyzed. It's concluded that the avalanche voltage of SPAD variation with temperature is about 0.7 V/℃. The constant temperature control circuit was designed to ensure the normal operation of SPAD. From the perspective of the optimal temperature control strategy, MAX1978 temperature control chip design circuit was chosen to realize the SPAD temperature constant. The working principle and main component of constant temperature control system were introduced. Through the experiment of constant temperature control circuit to verify the feasibility of the circuit, constant temperature control circuit can make the SPAD working environment temperature constant at 0.06℃ in 1 minute, the speed and accuracy of temperature control can meet the requirement of SPAD temperature constant, and ensure the normal work of the single photon detector SPAD, so that the single photon detector SPAD has better performance. |
来源
|
量子电子学报
,2016,33(1):81-87 【扩展库】
|
DOI
|
10.3969/j.issn.1007-5461.2016.01.012
|
关键词
|
光电子学
;
单光子雪崩二极管
;
恒温控制系统
;
温度控制芯片
|
地址
|
中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-5461 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
中国科学院战略性先导科技专项
;
国家重大科学仪器设备开发专项
|
文献收藏号
|
CSCD:5624457
|
参考文献 共
12
共1页
|
1.
Liu Wei. Near infrared single photon detection.
物理,2010,39(12):825-831
|
CSCD被引
1
次
|
|
|
|
2.
Beveratos Alexios. Single photon quantum cryptography.
Phys. Rev. Lett,2002,89(18):1-4
|
CSCD被引
26
次
|
|
|
|
3.
Gisin Nicolas. Quantum cryptography.
Review of Modern Physics,2002,74(1):145-195
|
CSCD被引
565
次
|
|
|
|
4.
Ai Qing. Investigation of single-photon detector based on APD parametric modeling.
量子电子学报,2013,30(2):219-224
|
CSCD被引
1
次
|
|
|
|
5.
Liu Di. Temperature control system based on digital PID and 89C52 single-chip microcomputer.
电子设计工程,2010,18(4):28-30
|
CSCD被引
1
次
|
|
|
|
6.
Li Jian. A temperature control system design based on FPGA+ VHDL.
电子技术,2008,12(9):20-21
|
CSCD被引
1
次
|
|
|
|
7.
He Wei. Research and implement of temperature control arithmetic for ARM system.
现代电子技术,2010,24(19):140-142
|
CSCD被引
1
次
|
|
|
|
8.
Li Shuifeng. Based on the ADN8831 to realize the infrared single photon detector precise temperature control.
量子电子学报,2007,24(6):704-708
|
CSCD被引
1
次
|
|
|
|
9.
Huang Jie. A bipolar high precision temperature control system of semiconductor laser.
量子电子学报,2010,27(2):151-154
|
CSCD被引
2
次
|
|
|
|
10.
Ma Yingjian. Temperature dynamic characteristics analysis and control of optic-fiber light source.
北京航空航天大学学报,2006,32(3):324-327
|
CSCD被引
1
次
|
|
|
|
11.
Lv Hua. Research on characteristics of avalanche photodiode with passive quenching method.
应用光学,2006,27(4):355-358
|
CSCD被引
1
次
|
|
|
|
12.
Liang Chuang. Silicon avalanche photodiodes single photon detector.
光子学报,2000,29(12):1142-1147
|
CSCD被引
4
次
|
|
|
|
|