激光增材制造中残余应力形成机理、表征及调控方法的研究进展
A critical review on residual stress in laser additive manufacturing:formation mechanism,characterization and control method
查看参考文献147篇
文摘
|
激光增材制造可以实现高性能复杂金属构件的一体化直接成形,但该过程中存在的非均匀温度梯度分布、微熔池的近快速凝固、原位热处理效应以及非平衡固态相变、微观结构的不均匀性等会产生复杂的残余应力,严重影响成形构件质量和综合性能。因此,本文围绕激光增材制造残余应力,首先介绍了残余应力的基本定义、分类及产生原因;然后针对激光增材制造过程中残余应力的特殊性、形成机理、表征方法及调控方法的研究现状进行了系统的综述,介绍了残余应力的表征方法及其特点,并说明了各方法的适用性及优缺点,总结了调控残余应力的方法可分为后处理调控和原位处理调控;最后,展望了研究激光增材制造残余应力的产生原因和演化机制应考虑几类应力的叠加效应。残余应力的表征应采用多种方法结合,相互辅助验证。为避免成形过程中应力集中影响成形质量以及避免后处理对构件精度产生影响,应重点研究原位调控残余应力的方法。 |
其他语种文摘
|
Laser additive manufacturing(LAM) enables the integrated direct formation of high-performance metallic components with complex geometry. However, the non-uniform distribution of temperature gradients, in-situ heat treatment effects, non-equilibrium solid phase transformations, and heterogeneous microstructure during the process result in intricate residual stresses that significantly affect the quality and overall performance. A comprehensive review of residual stress in LAM by introducing its fundamental definition and classification is provided in this paper. Furthermore, the particularity, formation mechanisms, characterization methods, and regulation techniques associated with residual stress in LAM is systematically reviewed. The subsequent sections introduce various characterization methods for residual stress in LAM components, along with their respective characteristics. Additionally, the applicability,advantages, and disadvantages of each method are presented. Furthermore, the methods for controlling residual stress can be categorized into post-treatment control and in-situ treatment control. Finally, the joint effect of different types of residual stress should be considered in the study of the cause and evolution mechanism of residual stress in LAM. The characterization method of residual stress should be integrated with various methods to facilitate mutual verification. To mitigate the impact of stress concentration on the printing process and resultant quality, as well as minimize the influence of post-processing stress on part accuracy, it is imperative to investigate in-situ control methods for residual stress and explore real-time online monitoring techniques for LAM. |
来源
|
材料工程
,2024,52(7):15-32 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000823
|
关键词
|
激光增材制造
;
残余应力
;
残余应力表征
;
有限元仿真
;
残余应力调控
|
地址
|
上海大学材料科学与工程学院, 上海市省部共建高品质特殊钢冶金与制备国家重点实验室, 上海, 200444
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家重点研发计划项目
;
国家自然科学基金项目
;
上海市自然基金面上项目
;
800所科技创新基金项目
;
上海市省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室自主课题
;
上海市科委项目
|
文献收藏号
|
CSCD:7782210
|
参考文献 共
147
共8页
|
1.
黄卫东. 材料3D打印技术的研究进展.
新型工业化,2016,6(3):53-70
|
CSCD被引
36
次
|
|
|
|
2.
More S R. Resent research status on laser cladding as erosion resistance technique-an overview.
Materials Today: Proceedings,2017,4(9):9902-9908
|
CSCD被引
8
次
|
|
|
|
3.
杨强. 激光增材制造技术的研究现状及发展趋势.
航空制造技术,2016(12):26-31
|
CSCD被引
71
次
|
|
|
|
4.
Moeinfar K. A review on metallurgical aspects of laser additive manufacturing( LAM): stainless steels, nickel superalloys, and titanium alloys.
Journal of Materials Research and Technology,2022,16:1029-1068
|
CSCD被引
11
次
|
|
|
|
5.
林鑫. 高性能金属构件的激光增材制造.
中国科学:信息科学,2015,45(9):1111-1126
|
CSCD被引
93
次
|
|
|
|
6.
Tan C L. Progress and perspectives in laser additive manufacturing of key aeroengine materials.
International Journal of Machine Tools and Manufacture,2021,170:103804
|
CSCD被引
43
次
|
|
|
|
7.
张振杰. 增材制造成型机械超材料的研究进展及展望.
机床与液压,2022,50(14):151-158
|
CSCD被引
2
次
|
|
|
|
8.
Bernd B. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties.
Materials & Design,2009,31:106-111
|
CSCD被引
1
次
|
|
|
|
9.
Buchbinder D. High power selective laser melting (HP SLM) of aluminum parts.
Physics Procedia,2011,12:271-278
|
CSCD被引
56
次
|
|
|
|
10.
Melchels F P W. Additive manufacturing of tissues and organs.
Progress in Polymer Science,2012,37(8):1079-1104
|
CSCD被引
41
次
|
|
|
|
11.
许世娇. 金属增材制造技术在航空领域的应用现状及前景展望.
粉末冶金工业,2022,32(3):9-17
|
CSCD被引
6
次
|
|
|
|
12.
Byron B M. Metal additive manufacturing in aerospace: a review.
Materials & Design,2021,209:110008
|
CSCD被引
3
次
|
|
|
|
13.
林鑫. 应用于航空领域的金属高性能增材制造技术.
中国材料进展,2015,34(9):684-688
|
CSCD被引
78
次
|
|
|
|
14.
Rajat K. Wire arc additive manufacturing: a brief review on advancements in addressing industrial challenges incurred with processing metallic alloys.
Materials Today: Proceedings,2022,50(5):1971-1978
|
CSCD被引
1
次
|
|
|
|
15.
任慧娇. 增材制造技术在航空航天金属构件领域的发展及应用.
航空制造技术,2020,63(10):72-77
|
CSCD被引
10
次
|
|
|
|
16.
Zhang F Y. Mechanical properties improvement of nickel-based alloy 625 fabricated by powder-fed laser additive manufacturing based on linear beam oscillation.
Materials Science and Engineering: A,2022,842:143054
|
CSCD被引
4
次
|
|
|
|
17.
Markanday J F S. Applications of alloy design to cracking resistance of additively manufactured Ni-based alloys.
Materials Science and Technology,2022,38(16):1300-1314
|
CSCD被引
2
次
|
|
|
|
18.
Thomas O. Analysis of texture and anisotropic elastic properties of additively manufactured Ni-base alloys.
Metals,2022,12(11):1991
|
CSCD被引
1
次
|
|
|
|
19.
Guo C. A comparing study of defect generation in IN738LC superalloy fabricated by laser powder bed fusion: Continuous-wave mode versus pulsed-wave mode.
Journal of Materials Science & Technology,2021,90:45-57
|
CSCD被引
5
次
|
|
|
|
20.
Li G X. Machinability of additively manufactured titanium alloys: a comprehensive review.
Journal of Manufacturing Processes,2022,75:72-99
|
CSCD被引
9
次
|
|
|
|
|