掠射角溅射沉积纳米结构氧化钨薄膜
Nano-structured WO_3 Thin Films Deposited by Glancing Angle Magnetron Sputtering
查看参考文献28篇
文摘
|
采用掠射角反应磁控溅射法在室温下沉积了纳米结构氧化钨(WO_3)薄膜,并对薄膜进行热处理。利用场发射扫描电镜(FE-SEM)和X射线衍射仪(XRD)对氧化钨薄膜的形貌和结构进行了表征。当掠射角度为80°时,采用直流电源沉积的氧化钨薄膜具有纳米斜柱状结构,而采用脉冲直流电源沉积的薄膜呈现纳米孔结构。纳米薄膜经450℃热处理3 h后,纳米斜柱彼此连接,失去规整结构,而纳米孔结构的孔尺寸变大。XRD分析表明室温沉积的氧化钨薄膜具有无定形结构,经450℃热处理1 h后,转变为单斜晶相。具有纳米斜柱状或纳米孔结构氧化钨薄膜的光学调制幅度在波长600 nm时达到60%,且电致变色性能可逆。 |
其他语种文摘
|
Nano-structured tungsten oxide (WO_3) thin films were deposited at room temperature by glancing angle reactive magnetron sputtering and then annealed at 450℃ in air. The films were characterized by field-emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD). The WO_3 thin film deposited by DC magnetron sputtering at 80° glancing angle exhibited oblique nano-column structure, while deposited by pulsed DC magnetron sputtering at the same angle exhibits nano-pore structure. After annealing at 450℃ for 3 h, the oblique nanocolums are conjunct with each other but the nano-pore structured remains with bigger pore size. XRD analysis reveals that WO_3 thin films deposited at room temperature demonstrate amorphous structure. The amorphous structure will transfers to monoclinic phase after annealing at 450℃ for 1 h. Transmittance difference between colorization and bleaching of nano-structured WO_3 thin film reaches 60% at wavelength of 600 nm. Electrochromic properties of nano-structured WO_3 thin films are highly reversible. |
来源
|
无机材料学报
,2018,33(12):1303-1308 【核心库】
|
DOI
|
10.15541/jim20180130
|
关键词
|
氧化钨薄膜
;
纳米结构
;
掠射角
;
磁控溅射
|
地址
|
1.
沈阳大学机械工程学院, 沈阳, 110044
2.
中国科学院金属研究所材料表面工程研究部, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-324X |
学科
|
一般工业技术 |
基金
|
国家自然科学基金
;
辽宁省高等学校优秀人才支持计划
|
文献收藏号
|
CSCD:6397724
|
参考文献 共
28
共2页
|
1.
Deb S K. Opportunities and challenges in science and technology of WO_3 for electrochromic and related applications.
Solar Energy Materials and Solar Cells,2008,92:245-258
|
CSCD被引
36
次
|
|
|
|
2.
Peng Mingdong. Structured and electrochromic properties of titanium-doped WO_3 thin film by sputtering.
Journal of Inorganic Materials,2017,32(3):287-292
|
CSCD被引
2
次
|
|
|
|
3.
Zhou J C. Facile morphology control of WO_3 nanostructure arrays with enhanced photoelectrochemical performance.
Appl. Surf. Sci,2017,403:274-281
|
CSCD被引
4
次
|
|
|
|
4.
Buch V R. Review on electrochromic property for WO_3 thin films using different deposition techniques.
Materials Today,2016,3(6):1429-1437
|
CSCD被引
6
次
|
|
|
|
5.
Man W K. Effect of substrate pre-treatment on microstructure and enhanced electrochromic properties of WO_3 nanorod arrays.
RSC Adv,2015,5:106182-106190
|
CSCD被引
2
次
|
|
|
|
6.
Cai G F. Growth of vertically aligned hierarchical WO_3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance.
Sol. Energy Mater. Sol. Cells,2014,124:103-110
|
CSCD被引
11
次
|
|
|
|
7.
Kondalkar V V. Nanobricklike WO_3 thin films: hydrothermal synthesis and electrochromic application.
Superlattices Microstruct,2014,73:290-295
|
CSCD被引
4
次
|
|
|
|
8.
Patil J M. Influence of film thickness on structural, surface morphology and electrical properties of spray pyrolise nanostructured WO_3 thin films.
Journal of Advanced Physics,2016,5(4):359-363
|
CSCD被引
1
次
|
|
|
|
9.
Hilliard S. Mesoporous thin film WO_3 photoanode for photoelectrochemical water spitting: a Sol-Gel dip coating approach.
Sustainable Energy Fuels,2017,1:145-153
|
CSCD被引
3
次
|
|
|
|
10.
Lu Shujuan. Electrochromic properties of PEG-modified tungsten oxide thin films.
Journal of Inorganic Materials,2017,32(2):185-190
|
CSCD被引
3
次
|
|
|
|
11.
Chai Y N. WO_3 nanoporous-nanorod film formed by hydrothermal growth of nanorods on anodized nanoporous substrate.
J. Electrochem. Soc,2015,162:E148–E153
|
CSCD被引
1
次
|
|
|
|
12.
White C M. Flexible electrochromic devices based on crystalline WO_3 nanostructures produced with hot-wire chemical vapor deposition.
Thin Solid Films,2009,517(12):3596-3599
|
CSCD被引
5
次
|
|
|
|
13.
Li Y B. WO_3 nanorods/nanobelts synthesized via physical vapor deposition process.
Chemical Physics Letters,2003,367(1/2):214-218
|
CSCD被引
18
次
|
|
|
|
14.
Castro-Hurtado I. Structural and optical properties of WO_3 sputtered thin films nanostructured by laser interference lithography.
Applied Surface Science,2013,276:229-235
|
CSCD被引
2
次
|
|
|
|
15.
Deepa M. Nanostructured mesoporous tungsten oxide films with fast kinetics for electrochromic smart windows.
Nanotechnology,2006,17:2625-2630
|
CSCD被引
3
次
|
|
|
|
16.
Robboe K. Advanced techniques for glancing angle deposition (GLAD).
Journal of Vacuum Science and Technology B,1998,16(3):1115-1122
|
CSCD被引
1
次
|
|
|
|
17.
Zhao Y P. Designing nanostructures by glancing angle deposition.
Proceeding of SPIE. 5219,2003:59-73
|
CSCD被引
1
次
|
|
|
|
18.
Charles C. Optical properties of nanostructured WO_3 thin films by glancing angle deposition: comparison between experiment and simulation.
Surface & Coatings Technology,2015,276(2):136-140
|
CSCD被引
2
次
|
|
|
|
19.
Charles C. Correlation between structural and optical properties of WO_3 thin films sputter deposited by glancing angle deposition.
Thin Solid Films,2013,534:275-281
|
CSCD被引
4
次
|
|
|
|
20.
Horprathum M. NO_2-sensing properties of WO_3 nanorods prepared by glancing angle DC magnetron sputtering.
Sensor and Actuator B,2013,176:685-691
|
CSCD被引
6
次
|
|
|
|
|