低温SiO_2气凝胶基复合相变材料的制备与性能分析
Preparation and performance analysis of low-temperature SiO_2aerogel-based phase change composites
查看参考文献34篇
文摘
|
以SiO_2气凝胶为支撑材料,通过物理吸附法制备定形SiO_2气凝胶基复合相变材料(PCCs),再利用密封盒进行二次封装。探究SiO_2气凝胶与相变材料的最佳配比,并对复合相变材料的微观结构、化学成分、孔结构、相变特性、热可靠性、定形能力和隔热性能进行表征。结果表明:含有质量分数为80%相变材料的SiO_2气凝胶复合相变材料(LS-80)具有最佳吸附比,并且在相变过程中显示了良好的定形能力,其熔点和熔融潜热分别为-15.6℃和170.2J/g;同时SiO_2气凝胶的成功吸附使得LS-80的比表面积、孔径和孔容大小下降至59m~2/g,13nm和0.2cm~3/g;20次冷热循环后,封装后相变材料的相变潜热减少了13.4%,而SL-80只减少了2.8%,表现出良好的热可靠性能;SiO_2气凝胶的添加使得复合相变材料导热系数降低,隔热能力增强。该结果为SiO_2气凝胶复合相变材料在冷链物流领域的应用提供了实验依据。 |
其他语种文摘
|
Shape-stabilized SiO_2aerogel phase change composites(PCCs)was prepared by physical adsorption method with SiO_2aerogel as support material,and then used for secondary packaging.The optimal adsorption ratio of SiO_2aerogel and phase change materials was explored,and microscopic morphology,chemical composition,pore structure,phase change characteristics,thermal reliability, shape stability and thermal insulation performance of composites were also characterized.The results show that the PCCs with 80%(mass fraction)phase change material(LS-80)has the optimization proportion,the composites exhibit shape-stability during the phase change process,and the melting point and melting enthalpy are-15.6 ℃ and 170.2J/g respectively.The successful adsorption of SiO_2aerogel makes the specific surface area,pore size and pore volume of LS-80reduced to 59m~2/g, 13nm and 0.2cm~3/g.After 20thermal cycles,the latent heat of packaged phase change material is decreased by 13.4%,while the SL-80is only decreased by 2.8%,which proves good thermal reliability.Besides,the thermal conductivity of the composites is reduced and the thermal insulation capacity is enhanced due to the addition of SiO_2aerogel.The results provide experimental basis for the application of SiO_2aerogel PCCs in the field of cold chain logistics. |
来源
|
材料工程
,2022,50(8):115-123 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000407
|
关键词
|
相变材料
;
SiO_2气凝胶
;
定形复合相变材料
;
储冷
|
地址
|
1.
厦门大学材料学院, 福建省特种先进材料重点实验室, 福建, 厦门, 361005
2.
中国航发沈阳发动机研究所, 沈阳, 110015
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
能源与动力工程 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7308149
|
参考文献 共
34
共2页
|
1.
Du J. Cooling performance of a thermal energy storage-based portable box for cold chain applications.
Journal of Energy Storage,2020,28(3):101238
|
CSCD被引
7
次
|
|
|
|
2.
刘晨敏. 冷链物流用复合相变蓄冷材料研究进展.
化工新型材料,2021,49(2):16-19
|
CSCD被引
2
次
|
|
|
|
3.
Sun Z M. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials.
Thermochimica Acta,2013,558:16-21
|
CSCD被引
17
次
|
|
|
|
4.
尚建丽. 基于均匀设计优化制备癸酸-棕榈酸/SiO_2复合相变材料.
材料工程,2015,43(9):94-102
|
CSCD被引
29
次
|
|
|
|
5.
Wu T. Preparation of a low-temperature nanofluid phase change material:MgCl_2-H_2O eutectic salt solution system with multi-walled carbon nanotubes(MWCNTs).
International Journal of Refrigeration,2020,113:136-144
|
CSCD被引
9
次
|
|
|
|
6.
Leducq D. Phase change material for the thermal protection of ice cream during storage and transportation.
International Journal of Refrigeration,2015,52:133-139
|
CSCD被引
2
次
|
|
|
|
7.
Fioretti R. A refrigerated container envelope with a PCM (phase change material)layer: experimental and theoretical investigation in a representative town in central Italy.
Energy Conversion and Management,2016,122:131-141
|
CSCD被引
7
次
|
|
|
|
8.
Liu M. Development of a novel refrigeration system for refrigerated trucks incorporating phase change material.
Applied Energy,2012,92:336-342
|
CSCD被引
19
次
|
|
|
|
9.
Zou T. Effect of expanded graphite size on performances of modified CaCl2·6H_2O phase change material for cold energy storage.
Microporous and Mesoporous Materials,2020,305:110403
|
CSCD被引
8
次
|
|
|
|
10.
Lin Y X. Review on thermal conductivity enhancement,thermal properties and applications of phase change materials in thermal energy storage.
Renewable and Sustainable Energy Reviews,2018,82:2730-2742
|
CSCD被引
33
次
|
|
|
|
11.
De Paola M G. T-history method:the importance of the cooling chamber to evaluate the thermal properties of Glauber's salt-based phase change materials.
Measurement Science and Technology,2021,32(3)
|
CSCD被引
1
次
|
|
|
|
12.
王温馨. 水合盐相变储能材料的研究进展.
化学通报,2021,84(4):330-338
|
CSCD被引
7
次
|
|
|
|
13.
Xu X F. Experimental and application study of Na_2SO_4·10H_2O with additives for cold storage.
Journal of Thermal Analysis and Calorimetry,2018,136(2):505-512
|
CSCD被引
1
次
|
|
|
|
14.
Fang Y T. Form-stable Na_2SO_4· 10H_2O-Na_2HPO_4·12H_2O eutectic/hydrophilic fumed silica composite phase change material with low supercooling and low thermal conductivity for indoor thermal comfort improvement.
International Journal of Energy Research,2020,44(4):3171-3182
|
CSCD被引
5
次
|
|
|
|
15.
Liu P. Capric acid/intercalated diatomite as form-stable composite phase change material for thermal energy storage.
Journal of Thermal Analysis and Calorimetry,2019,138(1):359-368
|
CSCD被引
9
次
|
|
|
|
16.
Ding J. A promising form-stable phase change material composed of C/SiO_2 aerogel and palmitic acid with large latent heat as short-term thermal insulation.
Energy,2020,210:118478
|
CSCD被引
6
次
|
|
|
|
17.
Wang F J. Short-chain modified SiO_2 with high absorption of organic PCM for thermal protection.
Nanomaterials,2019,9(4):657
|
CSCD被引
2
次
|
|
|
|
18.
Chen F X. Fly ash based lightweight wall materials incorporating expanded perlite/SiO_2 aerogel composite:towards low thermal conductivity.
Construction and Building Materials,2020,249:118728
|
CSCD被引
2
次
|
|
|
|
19.
张松. 亚临界干燥法制备TiO_2/SiO_2复合气凝胶及其光催化性能研究.
化工新型材料,2020,48(11):218-222
|
CSCD被引
1
次
|
|
|
|
20.
Shaid A. Preparation of aerogel-eicosane microparticles for thermoregulatory coating on textile.
Applied Thermal Engineering,2016,107:602-611
|
CSCD被引
3
次
|
|
|
|
|