SiC JFET与SiC MOSFET失效模型及其短路特性对比
Failure Models and Comparison on Short-Circuit Performances for SiC JFET and SiC MOSFET
查看参考文献14篇
文摘
|
建立了两种碳化硅(SiC)器件JFET和MOSFET的失效模型.失效模型是在传统的电路模型的基础上引入了额外附加的泄漏电流,其中,SiC JFET是在漏源极引入了泄漏电流,SiC MOSFET是在漏源极和栅极引入了泄漏电流;同时,为了体现温度和电场强度与失效的关系,用与温度和电场强度相关的沟道载流子迁移率代替了传统电路模型所采用的常数迁移率.有关文献的实验结果和半导体器件的计算机模拟(Technology Computer Aided Design,TCAD)验证了两种SiC器件失效模型的准确性.所建立的失效模型能够对比SiC JFET和SiC MOSFET的短路特性. |
其他语种文摘
|
The failure models of SiC JFET and SiC MOSFET have been developed.Based on the conventional circuit models of SiC JFET and SiC MOSFET,the additional leakage currents between the electrodes are introduced.For SiC JFET,the leakage current between the drain and the source is considered.For SiC MOSFET,two leakage currents are considered,one is the current between the drain and the source,another is the additional leakage current of the gate.Furthermore,the mobility dependent on the temperature and the electric-field strength replaces the constant mobility in conventional circuit models.The results from other experimental works and TCAD simulations verify the failure models of SiC JFET and SiC MOSFET.The developed failure models can be used to compare the short-circuit performances of SiC JFET and SiC MOSFET. |
来源
|
电子学报
,2019,47(3):726-733 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2019.03.030
|
关键词
|
SiC JFET
;
SiC MOSFET
;
失效
;
迁移率
;
泄漏电流
;
短路
|
地址
|
安徽工业大学, 电力电子与运动控制安徽省重点实验室, 安徽, 马鞍山, 243002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
安徽省高校省级自然科学研究重点项目
|
文献收藏号
|
CSCD:6483243
|
参考文献 共
14
共1页
|
1.
黄宇. 1.2kV SiC MOSFET器件URS应力退化机理研究.
电子学报,2016,44(1):130-134
|
CSCD被引
1
次
|
|
|
|
2.
张玉明. 6H-SiC JFET高温解析模型.
电子学报,1998,26(8):117-119
|
CSCD被引
1
次
|
|
|
|
3.
龚欣. 4H-SiC npn BJT特性研究.
电子学报,2003,31(12A):2201-2204
|
CSCD被引
3
次
|
|
|
|
4.
Kelley M D. Single pulse avalanche mode robustness of commercial 1200 V/80 mΩ SiC MOSFETs.
IEEE Transactions on Power Electronics,2017,32(8):6405-6415
|
CSCD被引
4
次
|
|
|
|
5.
Wang Z. Temperature-dependent short-circuit capability of silicon carbide power MOSFETs.
IEEE Transactions on Power Electronics,2016,31(2):1555-1566
|
CSCD被引
5
次
|
|
|
|
6.
Chen C. Study of short-circuit robustness of SiC MOSFETs,analysis of the failure modes and comparison with BJTs.
Microelectronics Reliability,2015,55(9/10):1708-1713
|
CSCD被引
4
次
|
|
|
|
7.
Kampitsis G. Comparative evaluation of the short-circuit withstand capability of 1.2kV silicon carbide(SiC) power transistors in real life applications.
Microelectronics Reliability,2015,55(12):2640-2646
|
CSCD被引
4
次
|
|
|
|
8.
Romano G. A comprehensive study of short-circuit ruggedness of silicon carbide power MOSFETs.
IEEE Journal of Emerging & Selected Topics in Power Electronics,2016,4(3):978-987
|
CSCD被引
14
次
|
|
|
|
9.
Schrock J A. Failure analysis of 1200V/150A SiC MOSFET under repetitive pulsed overcurrent conditions.
IEEE Transactions on Power Electronics,2015,31(3):1816-1821
|
CSCD被引
2
次
|
|
|
|
10.
Sadik D P. Short-circuit protection circuits for silicon-carbide power transistors.
IEEE Transactions on Industrial Electronics,2016,63(4):1995-2004
|
CSCD被引
7
次
|
|
|
|
11.
Platania E. A physics-based model for a SiC JFET accounting for electric-field-dependent mobility.
IEEE Transactions on Industry Applications,2011,47(1):199-211
|
CSCD被引
3
次
|
|
|
|
12.
孙凯. 碳化硅MOSFET的变温度参数建模.
中国电机工程学报,2013,33(3):37-43
|
CSCD被引
27
次
|
|
|
|
13.
Sometani M. Temperature-dependent analysis of conduction mechanism of leakage current in thermally grown oxide on 4H-SiC.
Journal of Applied Physics,2015,117(2):24505-24506
|
CSCD被引
1
次
|
|
|
|
14.
Perez-Tomes A. Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors.
Journal of Applied Physics,2006,100(11):114508-6
|
CSCD被引
14
次
|
|
|
|
|