不同直径圆球诱导燃烧的振荡机制与频率特性
Oscillation Mechanism and Frequency Characteristics of Combustion Induced by Spheres with Different Diameters
查看参考文献30篇
文摘
|
为了分析不同直径圆球诱导振荡燃烧的规律,并揭示圆球大小在振荡燃烧现象中所发挥的深层次作用,采用二维轴对称Euler方程和基元反应模型,对不同直径的圆球在H2/air预混气体中诱导振荡燃烧的现象开展数值模拟研究。研究发现,振荡频率并不是简单地随直径增大而逐渐从高频向低频连续过渡,而是存在两次突变,形成了超高频、高频以及低频三种振荡燃烧模态。在两种模态间过渡时,振荡达到稳定状态前,会存在一段双频耦合的振荡阶段。三种不同振荡燃烧模态的产生是受到了不同振荡机制的作用,而两种模态间过渡时的双频耦合现象则是两种机制相互竞争的结果。 |
其他语种文摘
|
In order to analyze the law of oscillating combustion induced by spheres with different diameters and to reveal the inherent effect of sphere size on the oscillation phenomenon,numerical simulations are carried out to investigate the oscillating combustion phenomenon in a H2/air premixed gas mixture induced by spheres with different diameters,by solving the two-dimensional axisymmetric Euler equations along with a detailed combustion mechanism.Results show that as the sphere diameter increases,the frequency of oscillating combustion does not decrease continuously,but with two abrupt drops,which implies that there exist three modes in the high-speed sphere-induced oscillating combustion phenomenon,namely the superhigh-frequency mode,the high-frequency mode,and the low-frequency mode.During the transition of two modes,there exists a metastable oscillating state of double-frequency coupling before the oscillation reaches its stable state.Moreover,the appearance of these three different modes is affected by different oscillation mechanisms,and the double-frequency coupling phenomenon during the transition of two modes is resulted from the competition of two mechanisms. |
来源
|
推进技术
,2021,42(4):745-754 【核心库】
|
DOI
|
10.13675/j.cnki.tjjs.200245
|
关键词
|
激波诱导燃烧
;
振荡燃烧
;
频率特性
;
高速圆球
;
基元反应
|
地址
|
1.
北京理工大学宇航学院, 北京, 100081
2.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4055 |
学科
|
力学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6939199
|
参考文献 共
30
共2页
|
1.
姜宗林. 爆轰推进概念与机理研究--新型发动机研究的热点.
世界科技研究与发展,2001,23(4)
|
CSCD被引
2
次
|
|
|
|
2.
Voland R T. X-43A Hypersonic Vehicle Technology Development.
Acta Astronautica,2006,59(1/5):181-191
|
CSCD被引
40
次
|
|
|
|
3.
Choi J. Unstable Combustion Induced by Oblique Shock Waves at the Non-Attaching Condition of the Oblique Detonation Wave.
Proceedings of the Combustion Institute,2009,32(2)
|
CSCD被引
12
次
|
|
|
|
4.
Takayama kazuyoshi. Ram Accelerators.
Proceedings of the Third International Workshop on Ram Accelerators,1997
|
CSCD被引
1
次
|
|
|
|
5.
Lee J H S.
The Detonation Phenomenon,2008
|
CSCD被引
67
次
|
|
|
|
6.
Ruegg F W. A Missile Technique for the Study of Detonation Waves.
Journal of Research of the National Bureau of Standards,Section C:Engineering and Instrumentation,1962
|
CSCD被引
1
次
|
|
|
|
7.
Behrens H. Studies of Hypervelocity Firings into Mixtures of Hydrogen with Air or with Oxygen.
Symposium (International) on Combustion,1965,10(1):245-252
|
CSCD被引
2
次
|
|
|
|
8.
Lehr H F. Experiments on Shock-Induced Combustion.
Astronautica Acta,1972,17:589-597
|
CSCD被引
34
次
|
|
|
|
9.
McVey J B.
Mechanisms of Instabilities of Exothermic Hypersonic Blunt-Body Flows,1968
|
CSCD被引
1
次
|
|
|
|
10.
McVey J B. Mechanism of Instabilities of Exothermic Hypersonic Blunt-Body Flows.
Combustion Science and Technology,1971,3(2):63-76
|
CSCD被引
7
次
|
|
|
|
11.
Matsuo A. Numerical Simulation of Shock-Induced Combustion Around an Axisymmetric Blunt Body.
26th Thermophysics Conference,1991
|
CSCD被引
1
次
|
|
|
|
12.
Matsuo A. Numerical Investigation of Oscillatory Instability in Shock-Induced Combustion around a Blunt Body.
AIAA Journal,1993,31(10)
|
CSCD被引
2
次
|
|
|
|
13.
Matsuo A. Computational Study of Unsteady Combustion around Projectiles with Emphasis on the Large-Disturbance Oscillation.
32nd Aerospace Sciences Meeting and Exhibit,1994
|
CSCD被引
1
次
|
|
|
|
14.
Sussman M. A Computational Study of Unsteady Shock-Induced Combustion of Hydrogen-Air Mixtures.
30th Joint Propulsion Conference and Exhibit,1994
|
CSCD被引
1
次
|
|
|
|
15.
Ahuja J. Numerical Investigation of Shock-Induced Combustion Past Blunt Projectiles in Regular and Large-Disturbance Regimes.
33rd Aerospace Sciences Meeting and Exhibit,1995
|
CSCD被引
1
次
|
|
|
|
16.
Ahuja J. Effects of Various Flow and Physical Parameters on Stability of Shock-Induced-Combustion.
34th Aerospace Sciences Meeting and Exhibit,1996
|
CSCD被引
1
次
|
|
|
|
17.
Matsuo A. First Damkoehler Parameter for Prediction and Classification of Unsteady Combustions Around Hypersonic Projectiles.
32nd Joint Propulsion Conference and Exhibit,1996
|
CSCD被引
1
次
|
|
|
|
18.
Kasahara J. Experimental Observation of Unsteady H_2-O_2 Combustion Phenomena Around Hypersonic Projectiles Using a Multiframe Camera.
Symposium(International)on Com bustion,1996
|
CSCD被引
1
次
|
|
|
|
19.
Matsuo A.
Numerical Prediction of Envelope Oscillation Phenomena of Shock-Induced Combustion,1998
|
CSCD被引
1
次
|
|
|
|
20.
Matsuo A. Prediction Method of Unsteady Combustion Around Hypersonic Projectile in Stoichiometric Hydrogen-Air.
AIAA Journal,1998,36(10)
|
CSCD被引
1
次
|
|
|
|
|