帮助 关于我们

返回检索结果

基于层次随机图的道路选取方法
A Hierarchical Random Graph Based Selection Method for Road Network Generalization

查看参考文献34篇

文摘 道路选取是道路网自动综合的关键问题之一,这方面已有多年研究,虽已取得很大进展,但尚不能自动完成一定比例尺下道路网的选取。本文提出一种基于层次随机图的道路选取方法,通过构建道路网的层次聚类结构以辅助道路选取。层次随机图是一种复杂网络模型,表现为一个二叉树,它不仅可以将复杂的道路网进行层次聚类,而且在可视化的同时提供了不同粒度的聚类信息。在构建道路网的层次随机图的基础上,本文采用累计权重数来衡量每条道路在整体层次结构中的重要性,并据此进行道路选择。我们将该方法应用到不同模式的实际道路网中进行道路选取试验,包括方格形、方格放射状、环形放射状、自由式路网等,以对应的谷歌地图作为参考进行道路选取符合数量、符合长度的定量评价和观察对比定性评价。试验表明本方法的选取结果与谷歌地图符合度很高。此外,与典型的基于路划长度和基于度中心度(degree centrality)的选取方法相比,本文方法更优。最后给出了本文方法优缺点的讨论和进一步研究的展望。
其他语种文摘 Generalization of road network is one of the focuses in map generalization. Road network generalization can be considered as the combination of two processes. One is selective omission, and the other is the simplification of selected roads. Selective omission is the key process, in which it is hard to maintain the overall and key local structures of original networks. Many solutions have been proposed for road selective omission. But previous solutions cannot maintain these structures in the process of selective omission. It will solve the problem if we can build the hierarchical structure of road networks and make selection based on the structure. This paper presents a novel method for selective omission. The method first builds the hierarchical structure of road networks. It is based on Hierarchical Random Graph (HRG) which transforms a graph into a dendrogram, which is widely used in complex networks. HRG goes beyond simple clustering and provides clustering information at all levels of granularity for visualization. But HRG is over detailed for multi-scale representation as its dendrogram usually contains tens or even more layers. So, after building HRG of road networks, we propose a measure named Accumulated Probability Number (APN) to simply HRG hierarchy. APN reflects the importance of each road in the whole network. It should be noted that we use road 'strokes' as vertices and the connections between them as edges when transforming a road network into a graph. The proposed approach is validated with case studies of road network generalization. Different patterns of road networks are considered including grid, ring-star-hybrid, grid-star-hybrid, irregular patterns. The corresponding Google Map is used as the reference for evaluation of road selection. The results of APN-based selection match well with the reference.
来源 地球信息科学学报 ,2012,14(6):719-727 【核心库】
关键词 道路网 ; 制图综合 ; 复杂网络 ; 层次随机图 ; 道路网络
地址

西南交通大学地球科学与环境工程学院, 成都, 610031

语种 中文
ISSN 1560-8999
学科 测绘学
基金 国土资源公益性行业科研专项经费 ;  国家自然科学基金项目 ;  中央高校基本科研业务费专项资金
文献收藏号 CSCD:4716221

参考文献 共 34 共2页

1.  Li Z. Algorithmic foundation of multi-scale spatial representation,2006:280 CSCD被引 2    
2.  Mackaness W. Automating the detection and simplification of junctions in road networks. GeoInformatica,1999,3(2):185-200 CSCD被引 13    
3.  Li Z. Topographic map generalization: Association of road elimination with thematic attributes. The Cartographic Journal,2002,39(2):153-166 CSCD被引 9    
4.  Thomson R. The 'good continuation' principle of perceptual organisation applied to the generalisation of road networks. 19th International Cartographic Conference,1999:1215-1223 CSCD被引 1    
5.  Jiang B. A structural approach to the model generalization of an urban street network. GeoInformatica,2004,8(2):157-171 CSCD被引 49    
6.  Zhou Q. A comparative study of various strategies to concatenate road segments into strokes for map generalization. International Journal of Geographical Information Science,2012,26(4):691-715 CSCD被引 14    
7.  Hillier B. Space is the machine: A configurational theory of architecture,1996 CSCD被引 37    
8.  Hillier B. The social logic of space,1984 CSCD被引 83    
9.  周亮. 基于动态中介中心性的城市道路网实时分层方法. 地球信息科学学报,2012,14(3):292-298 CSCD被引 9    
10.  Thomson R. Exploiting perceptual grouping for map analysis, understanding and generalization: The case of road and river networks. Graphics Recognition: Algorithms and Applications (GREC 2002),2002:148-157 CSCD被引 1    
11.  Li Z. Integration of linear and areal hierarchies for continuous multiscale representation of road networks. International Journal of Geographical Information Science,2012,iFirst(1):1-26 CSCD被引 1    
12.  Jiang B. Selection of streets from a network using selforganizing maps. Transactions in GIS,2004,8(3):335-350 CSCD被引 17    
13.  Jose L. Generalizationoriented road line classification by means of an artificial neural network. GeoInformatica,2008,12(3):289-312 CSCD被引 1    
14.  Deng H. A generalization model of road networks based on genetic algorithm. Geometrics and Information Science of Wuhan University,2006,31(2):164-167 CSCD被引 1    
15.  Morisset B. Simulation and agent modelling for road selection in generalization. proceedings of the ICA 18th International Cartographic Conference,1997:1376-1380 CSCD被引 2    
16.  Topfer F. The principles of selection. Cartographic Journal,1966,3(1):10-16 CSCD被引 33    
17.  徐柱. 基于有向属性关系图的典型道路交叉口结构识别方法. 测绘学报,2011,40(1):125-131 CSCD被引 23    
18.  Yang B. An adaptive method for identifying the spatial patterns in road networks. Computers, Environment and Urban Systems,2010(34):40-48 CSCD被引 27    
19.  Clauset A. Hierarchical structure and the prediction of missing links in networks. Nature,2008(453):98-101 CSCD被引 135    
20.  Wu H. Automatic create tree structure of contours and its applications. Developments in Surveying and Mapping,1996(1):2-7 CSCD被引 1    
引证文献 7

1 郭敏 道路网智能选取的案例类比推理法 测绘学报,2014,43(7):761-770
CSCD被引 14

2 刘凯 基于BP神经网络和拓扑参数的道路网选取研究 测绘科学技术学报,2016,33(3):325-330
CSCD被引 4

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号