平行多裂隙模型中换热单元体对EGS 釆热的影响
Impact of heat transfer unit on EGS heat extraction in the multi-parallel fracture model
查看参考文献36篇
文摘
|
增强型地热系统(EGS)是开发深层高温地热能的有效途径. 本文在垂直单裂隙模型(SVFM)的基础上构建了平行多裂隙模型(MPFM) ,验证了其可靠性及优越性,创新地提出了换热单元体(HTU)的概念,将对整体热储层的研究集中于采热基本单元上,并利用此模型对EGS 采热过程中裂隙流体及热储层温度场的演化进行模拟. 基于介质分类,将采热的影响因素分为流体和岩体. 本文针对岩体热储层分别设计多组案例,分析了岩体HTU 尺寸及储层初始温度对釆热的影响. 结果表明,HTU的厚度与流体产出温度呈负相关,但与热储层的热采率呈正效应; HTU的长度与采出温度和热储寿命呈正相关; 热储层的初始温度也与流体采出温度呈正相关,对热储寿命影响不大. 因此,热储层激发越充分,对流换热越充分,采热效率越高. 注采策略应与热储层的激发情况相配合,才能取得较好的热开采效果. |
其他语种文摘
|
Enhanced geothermal system (EGS) is an effective way to explore deep geothermal energy. Based on the knowledge of simple vertical fracture model (SVFM) ,multi-parallel fracture model (MPFM) is built up and validated. It can basically simulate the evolution of reservoir and fluid temperature field during the heat extraction process,and does not have the limitations on the rock size. In this paper,a concept of heat transfer unit (HTU) has been put forward,which focuses the study of whole heat reservoir on a basic heat extraction unit. By the differences of medium, the affecting factors of heat extraction can be divided into fluid and rock. Several comparison cases,which mainly focus on the scale of HTU and the initial reservoir temperature,have been established to study the influence of the rock on the process of heat mining. The results suggest that the thickness of HTU has a negative effect on the fluid outlet temperature,but has a positive effect on the whole heat extraction rate; the length of HTU has a positive correlation with the outlet temperature and the lifetime of reservoir; the initial reservoir temperature is also of positive effect to the heat production temperature,but it has a negligible effect on the lifetime of the reservoir. In conclusion, better heat reservoir stimulation will improve the heat extraction efficiency. Since the heat extraction efficiency is controlled by both fluid and rock,in order to get better result,the injection-production strategy should be matched with the reservoir stimulation result. |
来源
|
地球物理学进展
,2016,31(3):1399-1405 【核心库】
|
DOI
|
10.6038/pg20160364
|
关键词
|
增强型地热系统
;
平行多裂隙模型
;
垂直单裂隙模型
;
换热单元体
|
地址
|
中国科学院广州能源研究所, 中国科学院可再生能源重点实验室, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-2903 |
学科
|
地球物理学 |
基金
|
国家自然科学基金-广东联合基金
;
广东省自然科学基金重大基础培育项目
;
中科院广州能源所所长基金培育项目
|
文献收藏号
|
CSCD:5754520
|
参考文献 共
36
共2页
|
1.
Breede K. A systematic review of enhanced (or engineered) geothermal systems: Past,present and future.
Geothermal Energy,2013,1(1):4
|
CSCD被引
46
次
|
|
|
|
2.
Cheng A H D. Integral equation solution of heat extraction from a fracture in hot dry rock.
International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(13):1327-1338
|
CSCD被引
13
次
|
|
|
|
3.
Elsworth D. Theory of thermal recovery from a spherically stimulated hot dry rock reservoir.
Journal of Geophysical Research Solid Earth,1989,94(B2):1927-1934
|
CSCD被引
1
次
|
|
|
|
4.
Feng Z J. Development program of hot dry rock geothermal resource in the Yangbajing Basin of China.
Renewable Energy,2012,39(1):490-495
|
CSCD被引
16
次
|
|
|
|
5.
Fox D B. Sustainable heat farming: Modeling extraction and recovery in discretely fractured geothermal reservoirs.
Geothermics,2013,46:42-54
|
CSCD被引
16
次
|
|
|
|
6.
Genter A. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS).
Comptes Rendus Geoscience,2010,342(7/8):502-516
|
CSCD被引
23
次
|
|
|
|
7.
Gringarten A C. Theory of heat extraction from fractured hot dry rock.
Journal of Geophysical Research,1975,80:1120-1124
|
CSCD被引
6
次
|
|
|
|
8.
Kalinina E. Analysis of the effects of heterogeneity on heat extraction in an EGS represented with the continuum fracture model.
Proceedings,37th Workshop on Geothermal Reservoir Engineering,2012
|
CSCD被引
1
次
|
|
|
|
9.
Keller A A. Prediction of single phase transport parameters in a variable aperture fracture.
Geophysical Research Letters,1995,22(11):1425-1428
|
CSCD被引
3
次
|
|
|
|
10.
Lengline O. Fluid-induced earthquakes with variable stress drop.
Journal of Geophysical Research: Solid Earth,2014,119(12):8900-8913
|
CSCD被引
3
次
|
|
|
|
11.
Li M T. Investigation of a new HDR system with horizontal wells and multiple fractures using the coupled wellbore-reservoir simulator TOUGH2MP-WELL /EOS3.
Environmental Earth Sciences,2015,73(10):6047-6058
|
CSCD被引
8
次
|
|
|
|
12.
McFarland R D. Extracting energy from hydraulically fractured geothermal reservoirs.
Proceedings of11th Intersociety Energy Conversion Engineering Conference,1976
|
CSCD被引
1
次
|
|
|
|
13.
Novakowski K S. Preliminary interpretation of tracer experiments conducted in a discrete rock fracture under conditions of natural flow.
Geophysical Research Letters,1995,22(11):1417-1420
|
CSCD被引
7
次
|
|
|
|
14.
Ogino F. Heat transfer from hot dry rock to waterflowingthrough a circular fracture.
Geothermics,1999,28(1):21-44
|
CSCD被引
5
次
|
|
|
|
15.
Shaik A R. Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system.
Applied Thermal Engineering,2011,31(10):1600-1606
|
CSCD被引
26
次
|
|
|
|
16.
Tenma N. The Hijiori Hot Dry Rock test site,Japan: Evaluation and optimization of heat extraction from a two-layered reservoir.
Geothermics,2008,37(1):19-52
|
CSCD被引
17
次
|
|
|
|
17.
Tester J W.
The future of geothermal energy: Impact of enhanced geothermal systems (EGS) on the United States in the 21st century,2006
|
CSCD被引
8
次
|
|
|
|
18.
Vogt C. Estimating the permeability distribution and its uncertainty at the EGS demonstration reservoir Soultz-sous-Forets using the ensemble Kalman filter.
Water Resources Research,2012,48(8):W08517
|
CSCD被引
5
次
|
|
|
|
19.
Wu B S. Perturbation analysis for predicting the temperatures of water flowing through multiple parallel fractures in a rock mass.
International Journal of Rock Mechanics and Mining Sciences,2015,76:162-173
|
CSCD被引
5
次
|
|
|
|
20.
Wunder R.
Thermal drawdown and recovery of singly and multiply fractured hot dry rock reservoirs. Informal Report W-7405-ENG. 36,1978
|
CSCD被引
2
次
|
|
|
|
|