念青唐古拉山北麓草甸海拔分布上限土壤温湿度的季节变化
Seasonal Variations of Soil Temperature and Moisture at the Upper Limit of Alpine Meadow in North-facing Slope of the Nianqingtanggula Mountains
查看参考文献50篇
文摘
|
本研究基于西藏念青唐古拉山北麓高山嵩草草甸海拔分布上限(5125m)地下10cm和30cm土壤温度和水分连续3年(2008-2010年)的监测数据,分析了草甸海拔分布上限土壤温度和未冻水含量的季节动态特征。结果表明:1)土壤在4月中下旬解冻,10月中下旬冻结;6-8月份土壤温度日振幅最大,10cm和30cm分别为3.8oC和1.4oC;2)土壤未冻水含量回升(下降)在解冻(冻结)开始后,5-10月份未冻水含量较高,其中10cm和30cm分别为2%~6%和15%~20%;3)基于10cm土壤温度推算的本地区高山嵩草草甸海拔分布上限的生长季在6月初至8月末或9月初,持续时间为80-87天,生长季平均土壤温度和含水量分别为6.78±0.73oC和4.14±0.91%,生长季期间日最低温度集中在3~7oC之间(占90%以上天数);4)与较低海拔处(4980m)相比,高山嵩草草甸海拔分布上限处10cm土壤温度和未冻水含量均明显偏低,生长季8月份出现日最低温<5oC的天数也明显增加。 |
其他语种文摘
|
Based on the three-year observations in a plot at the upper limit of the alpine Kobresia meadow(5125 m a.s.l.) on the Nianqingtanggula Mountains in the southern part of Namco Basin in Tibet,we analyzed the seasonal variations of soil temperature and moisture at soil depths of 10 and 30 cm.The results were obtained as follows.1) The soil thawed in late April and froze in late October.The daily amplitude of soil temperature from June to August,which was 3.8 oC at 10 cm and 1.4 oC at 30 cm on average,reflected the highest values throughout the year.2) The unfrozen soil water content increased(declined) when the soil began to thaw(freeze).And the soil moisture was relatively high from May to October,which was 2%-6% at 10 cm and 15%-20% at 30 cm.3) Based on the soil temperature measurements at 10 cm depth,the growing season length for vegetation at the upper limit of the alpine Kobresia meadow was calculated to last 80-87 days,which began in early June and ended in late August or early September.And the average soil temperature and moisture were 6.78±0.73°C and 4.14±0.91%,respectively.The lowest daily temperature during the growing season was mainly observed between 3°C and 7°C.4) Compared with the soil temperature and moisture at the lower altitude of 4980 m a.s.l.,those at 5125 m were significantly lower.Also,the number of days of daily minimum temperature < 5°C in August at the higher altitude was far more than that at the lower. |
来源
|
地理学报
,2012,67(9):1246-1254 【核心库】
|
关键词
|
土壤温度
;
土壤水分
;
高山嵩草草甸海拔上限
;
季节变化
;
生长季长度
;
念青唐古拉山
|
地址
|
中国科学院青藏高原研究所, 中国科学院青藏高原环境变化与地表过程重点实验室, 北京, 100085
|
语种
|
中文 |
ISSN
|
0375-5444 |
学科
|
畜牧、动物医学、狩猎、蚕、蜂 |
基金
|
国家自然科学基金项目
;
国家973计划
|
文献收藏号
|
CSCD:4628971
|
参考文献 共
50
共3页
|
1.
Korner C.
Alpine Plant Life: Functional Plant Ecology of Mountain Ecosystems,2003
|
CSCD被引
2
次
|
|
|
|
2.
Chapin F S III.
Principles of Terrestrial Ecosystem Ecology,2002
|
CSCD被引
45
次
|
|
|
|
3.
Billings W D. Ecology of arctic and alpine plants.
Biological Reviews of the Cambridge Philosophical Society,1968,43:481-529
|
CSCD被引
29
次
|
|
|
|
4.
Anderson J E. Effects of low soil temperature on transpiration, photosynthesis, leaf relative water content, and growth among elevationally diverse plant populations.
Ecology,1973,54(6):1220-1233
|
CSCD被引
2
次
|
|
|
|
5.
Billings W D. An alpine snowbank environment and its effects on vegetation, plan development and productivity.
Ecology,1959,40:388-397
|
CSCD被引
11
次
|
|
|
|
6.
Isard S A.
Factors influencing soil moisture and plant community distribution on Niwot Ridge, Front Range, Colorado, U.S.A. Arctic and Alpine Research, 18,1986:83-96
|
CSCD被引
1
次
|
|
|
|
7.
Liu X S. Spatio-temporal variability of soil temperature and moisture across two contrasting timberline ecotones in the Sergyemla Mountains, Southeast Tibet.
Arctic Antarctic and Alpine Research,2011,43(2):229-238
|
CSCD被引
13
次
|
|
|
|
8.
Goodrich L E. Some results of a numerical study of ground thermal regimes.
Proceedings of the Third International Conference on Permafrost, National Research Council of Canada, Ottawa,1978:29-34
|
CSCD被引
1
次
|
|
|
|
9.
田克明. 西藏纳木错流域冻土环境初步研究.
地球科学进展,2006,21(12):1324-1332
|
CSCD被引
5
次
|
|
|
|
10.
杨梅学. 藏北高原土壤的温湿特征.
地理研究,1999,18(3):312-317
|
CSCD被引
20
次
|
|
|
|
11.
杨梅学. 青藏公路沿线土壤的冻融过程及水热分布特征.
自然科学进展,2000,10(5):443-450
|
CSCD被引
34
次
|
|
|
|
12.
Yang M X. Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau.
Chinese Science Bulletin,2007,52(1):136-139
|
CSCD被引
34
次
|
|
|
|
13.
Wan G N. Variations in Soil Temperature at BJ Site on the Central Tibetan Plateau.
Journal of Mountain Science,2012,9(2):274-285
|
CSCD被引
7
次
|
|
|
|
14.
王绍令. 青藏高原多年冻土区地温监测结果分析.
冰川冻土,1999,21(2):159-163
|
CSCD被引
32
次
|
|
|
|
15.
吴青柏. 青藏高原冻土及水热过程与寒区生态环境的关系.
冰川冻土,2003,25(3):250-255
|
CSCD被引
94
次
|
|
|
|
16.
赵逸舟. 藏北高原土壤温湿变化特征分析.
冰川冻土,2007,29(4):578-583
|
CSCD被引
24
次
|
|
|
|
17.
Korner C. A world-wide study of high altitude treeline temperatures.
Journal of Biogeography,2004,31:713-732
|
CSCD被引
120
次
|
|
|
|
18.
Berdanier A B. Growing season length and soil moisture interactively constrain high elevation aboveground net primary production.
Ecosystems,2011,14(6):963-974
|
CSCD被引
3
次
|
|
|
|
19.
Piao S. Net carbon dioxide losses of northern ecosystems in response to autumn warming.
Nature,2008,451:49-52
|
CSCD被引
107
次
|
|
|
|
20.
王宏. 基于NOAA NDVI和MSAVI研究中国北方植被生长季变化.
生态学报,2007,27(2):504-515
|
CSCD被引
54
次
|
|
|
|
|