带钢热连轧机工作辊非稳态传热的数值模拟
NUMERICAL SIMULATION ON UNSTEADY STATE HEAT TRASFER OF WORK ROLLS DURING CONTINUOUS HOT STRIP ROLLING
查看参考文献15篇
文摘
|
以Flunet 6.3为平台,利用多重坐标系和自定义函数功能,研究了3种常用复合轧辊在带钢热连轧过程中的非稳态温度波和热流波的传播特点,并对其引起的热冲击现象进行了探讨.结果表明,辊内的温度分布和传播特点可以分为高频和低频2种非稳态温度波来进行研究.高频温度波随着深度的增加快速衰减,最大影响深度不超过7.5 mm,而低频温度波衰减较慢,深度超过了20 mm.热冲击随着深度的增加而快速减小,在同样的条件下,高速钢复合轧辊的热冲击深度最大,而高Ni-Cr铸铁复合轧辊的热冲击深度最小.随着轧钢块数的增加,工作辊每轧制一块带坯的吸热量减少,散热量增加,留存的热量减少 |
其他语种文摘
|
The spreading properties of unsteady state temperature wave, heating flux wave and heating shock phenomena during continuous hot slab rolling have been numerically simulated for three types of commonly used composite rolls by use of various coordinate systems and user-defined functions based on Fluent 6.3 software. The results indicate that the temperature wave can be divided into a high-frequency and low-frequency unsteady state temperature wave to describe the temperature distribution and spreading properties in rolls. It is found that the wave amplitude of the high-frequency temperature wave will quickly decrease with the increase of propagation depth, and its propagation depth of maximum impact is less than 7.5 mm. But, under the same rolling conditions, the amplitude attenuation of the low-frequency temperature wave is slower, and its propagation depth of impact is more than 20 mm. The heating shock decreases rapidly with the increase of distance from the surface of work roll. The heating shock depth is the deepest for the high speed steel composite roll, but the shallowest for the high nicked chromium cast iron composite roll under the same rolling conditions. The absorbed and resided heat by work-rolls during each slab hot rolling is down, but the dissipated heat by rolls is up with rolled slab number increasing |
来源
|
金属学报
,2010,46(8):1009-1017 【核心库】
|
DOI
|
10.3724/sp.j.1037.2009.00869
|
关键词
|
热轧
;
复合轧辊
;
温度波
;
热冲击
;
热流波
|
地址
|
东北大学, 材料电磁过程研究教育部重点实验室, 沈阳, 110819
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-1961 |
学科
|
金属学与金属工艺 |
基金
|
国家863计划
;
国家自然科学基金
|
文献收藏号
|
CSCD:3992034
|
参考文献 共
15
共1页
|
1.
Twadoh S.
ISIJ Int,1992,32:1131
|
CSCD被引
2
次
|
|
|
|
2.
Kudo T.
ISIJ Int,1992,32:1190
|
CSCD被引
5
次
|
|
|
|
3.
Parke D M.
Iron Steel Eng,1972,211:83
|
CSCD被引
1
次
|
|
|
|
4.
Devadas C.
Ironmaking Steelmaking,1986,13:311
|
CSCD被引
11
次
|
|
|
|
5.
Teseng A A.
Metall Trans.A,1990,20:2305
|
CSCD被引
11
次
|
|
|
|
6.
Lin Z.
Mater Process Technol,1995,49:125
|
CSCD被引
1
次
|
|
|
|
7.
郭忠峰. 1700热连轧机轧辊温度场及热凸度研究.
东北大学学报(自然科学版),2008,29:517
|
CSCD被引
10
次
|
|
|
|
8.
杨利坡. 热连轧轧辊瞬态温度场研究.
钢铁,2005,40(10):38
|
CSCD被引
5
次
|
|
|
|
9.
汪凌云. 热轧板铸铁复合轧辊应力状态研究.
钢铁,1995,30(5):22
|
CSCD被引
1
次
|
|
|
|
10.
Guo Z F.
Journal of Iron and Steel Research,International,2006,13(6):27
|
CSCD被引
9
次
|
|
|
|
11.
陈宝官. 用有限元法预测板带轧机工作辊热变形.
钢铁,1991,26(8):40
|
CSCD被引
13
次
|
|
|
|
12.
高建红.
塑性工程学报,2009,16:2181
|
CSCD被引
1
次
|
|
|
|
13.
杜凤山. 板带热轧工作辊温度场的研究.
塑性工程学报,2005,12:78
|
CSCD被引
8
次
|
|
|
|
14.
Serajzadeh A.
Int Mech Sci,2002,44:2447
|
CSCD被引
1
次
|
|
|
|
15.
Saboonchi A.
Mater Process Technol,2004,148:35
|
CSCD被引
4
次
|
|
|
|
|