A highly efficient and tumor vascular-targeting therapeutic technique with size-expansible gadofullerene nanocrystals
查看参考文献35篇
文摘
It has long been a dream to achieve tumor targeting therapy that can efficiently reduce the toxicity and severe side effects of conventional antitumor chemotherapeutic agents. Taking advantage of the abnormalities of tumor vasculature, we demonstrate here a new powerful tumor vascular-targeting therapeutic technique for solid cancers that applies advanced nanotechnology to cut off the nutrient supply of tumor cells by physically destroying the abnormal tumor blood vessels. Water soluble magnetic Gd@C_(82) nanocrystals of the chosen sizes are deliberately designed with abilities to penetrate into the leaky tumor blood vessels. By triggering the radiofrequency induced phase transition of gadofullerene nanocrystals while extravasating the tumor blood vessel, the explosive structural change of nanoparticles generates a devastating impact on abnormal tumor blood vessels, resulting in a rapid and extensive ischemia necrosis and shrinkage of the tumors. This unprecedented target-specific physiotherapy is found to work perfectly for advanced and refractory solid tumors.
其他语种文摘
本文报道了一种利用金属富勒烯纳米晶体快速高效治疗肿瘤的新技术. 从生物学上肿瘤血管和正常血管在结构上存在显著差异这一特点着手, 利用材料学上金属富勒烯纳米晶体在吸收射频能量后发生相变, 伴随着体积剧烈膨胀的特性, 高选择性地摧毁肿瘤血管. 研究表明, 经过1小时治疗后, 肿瘤部位血流即可发生快速阻断, 治疗2~4小时后, 肿瘤组织逐步发生出血性坏死, 肿瘤塌陷体积缩小; 并且对于多种实体肿瘤均有显著疗效. 该技术是一种快速、广谱、特异性高、毒副作用小的新型肿瘤治疗技术, 是一种具有巨大发展潜力的肿瘤治疗技术.
来源
Science China. Materials
,2015,58(10):799-810 【核心库】
DOI
10.1007/s40843-015-0089-3
地址
1.
Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences;;Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences, Beijing, 100190
2.
University of Science and Technology of China, Bio-X Division, Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, Hefei, 230026
3.
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan, 430071
语种
英文
文献类型
研究性论文
ISSN
2095-8226
学科
肿瘤学
基金
the Key Research Program of the Chinese Academy of Sciences
;
国家自然科学基金
文献收藏号
CSCD:5551309
参考文献 共
35
共2页
1.
Nagy J A. Why are tumour blood vessels abnormal and why is it important to know?.
Br J Cancer,2009,100:865-869
CSCD被引
9
次
2.
Barinaga M. Designing therapies that target tumor blood vessels.
Science,1997,275:482-484
CSCD被引
12
次
3.
Heath V L. Anticancer strategies involving the vasculature.
Nat Rev Clin Oncol,2009,6:395-404
CSCD被引
13
次
4.
Tozer G M. Disrupting tumour blood vessels.
Nat Rev Cancer,2005,5:423-435
CSCD被引
24
次
5.
Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy.
Science,2005,307:58-62
CSCD被引
178
次
6.
Ferrari M. Cancer nanotechnology: opportunities and challenges.
Nat Rev Cancer,2005,5:161-171
CSCD被引
95
次
7.
Kievit F M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers.
Adv Mater,2011,23:H217-H247
CSCD被引
14
次
8.
Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines.
J Drug Target,2007,15:457-464
CSCD被引
23
次
9.
Fang J. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect.
Adv Drug Deliv Rev,2011,63:136-151
CSCD被引
109
次
10.
Liu X. Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior.
ACS Nano,2013,7:6244-6257
CSCD被引
8
次
11.
Thakor A S. Nanooncology: the future of cancer diagnosis and therapy.
CA-Cancer J Clin,2013,63:395-418
CSCD被引
18
次
12.
Li Y. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin.
Nat Commun,2014,5:4712
CSCD被引
5
次
13.
Siemann D W. Vascular targeted therapies in oncology.
Cell Tissue Res,2009,335:241-248
CSCD被引
4
次
14.
Wang M. Targeting nanoparticles to cancer.
Pharm Res,2010,62:90-99
CSCD被引
27
次
15.
de Bono J S. Translating cancer research into targeted therapeutics.
Nature,2010,467:543-549
CSCD被引
3
次
16.
Shu C Y. Conjugation of a water-soluble gadolinium endohedral fulleride with an antibody as a magnetic resonance imaging contrast agent.
Bioconjugate Chem,2008,19:651-655
CSCD被引
2
次
17.
Shu C. Facile preparation of a new gadofullerene-based magnetic resonance imaging contrast agent with high 1H relaxivity.
Bioconjugate Chem,2009,20:1186-1193
CSCD被引
5
次
18.
Guo Y G. The effects of annealing on the structures and electrical conductivities of fullerene-derived nanowires.
J Mater Chem,2004,14:914-918
CSCD被引
3
次
19.
Wang C R. Materials science: C66 fullerene encaging a scandium dimer.
Nature,2000,408:426-427
CSCD被引
15
次
20.
Wang T. Spin divergence induced by exohedral modification: ESR study of Sc_3C_2@C_(80) fulleropyrrolidine.
Angew Chem Int Ed,2010,49:1786-1789
CSCD被引
3
次