汞同位素地球化学概述
A review of Hg isotope geochemistry
查看参考文献105篇
文摘
|
汞同位素是一个新兴的地球化学示踪手段。过去十多年来,随着质谱技术的飞跃发展,汞同位素地球化学研究取得了引人注目的进展,主要体现在如下两个方面。(1)实验及理论地球化学研究表明,汞生物地球化学循环的一系列过程都能导致显著的汞同位素质量分馏。此外,汞还是自然界少数存在同位素非质量分馏的金属元素之一。汞同位素非质量分馏对识别某些特殊地球化学过程(如光还原作用、挥发作用等)具有重要指示意义。(2)自然样品的汞同位素测试表明,自然界汞同位素组成(δ~(202)Hg和Δ~(199) Hg)变化可达>10‰。目前,汞同位素地球化学已被应用于汞污染源示踪、汞生物地球化学过程判别等领域,并有望在不久的将来在汞的大气化学、生物地球化学等领域得到更为广泛的应用。 |
其他语种文摘
|
Mercury isotope is recognized as a new geochemical tracer. In the past decade, with the rapid development of mass spectrometry, mercury isotope geochemistry has made remarkable progress, which can be embodied in the following two aspects: (1) Laboratory studies showed that numerous processes related to Hg biogeochemical cycling can cause significant mass-dependent fractionation of mercury isotopes, and the recent discovery of mass-independent fractionation of mercury isotopes allows new constraints to identify specific process (e. g.,photochemical reduction) during mercury geochemical cycling; (2) Observation of natural samples showed large variations of mercury isotopic composition (up to 10‰ for both δ~(202)Hg and Δ~(199)Hg values) on the Earth, and mercury isotopes have been successfully used to track the sources and geochemical pathways of Hg in the environment, and in the future, it is also expected to get more extensive applications in a number of fields, including atmospheric chemistry and biogeochemistry. |
来源
|
地学前缘
,2015,22(5):124-135 【核心库】
|
DOI
|
10.13745/j.esf.2015.05.010
|
关键词
|
汞
;
汞同位素
;
同位素质量分馏
;
同位素非质量分馏
;
地球化学示踪
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550002
2.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-2321 |
学科
|
地质学 |
基金
|
国家973计划
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:5483638
|
参考文献 共
105
共6页
|
1.
EPA USA.
Mercury Study Report to Congress. Volume 4. An Assessment of Exposure to Mercury in the United States,1997
|
CSCD被引
1
次
|
|
|
|
2.
Selin N E. Global biogeochemical cycling of mercury: A review.
Annual Review of Environment and Resources,2009,34:43-63
|
CSCD被引
56
次
|
|
|
|
3.
Lindqvist O. Mercury in the Swedish environment.
Water, Air, and Soil Pollution,1991,55:193-216
|
CSCD被引
3
次
|
|
|
|
4.
Yin R S.
Minamata Convention on Mercury,2013
|
CSCD被引
1
次
|
|
|
|
5.
Yin R. Application of the stable-isotope system to the study of sources and fate of Hg in the environment: A review.
Applied Geochemistry,2010,25:1467-1477
|
CSCD被引
6
次
|
|
|
|
6.
Bergquist B A. The odds and evens of mercury isotopes: Applications of mass-dependent and mass-independent isotope fractionation.
Elements,2009,5:353-357
|
CSCD被引
18
次
|
|
|
|
7.
Blum J D. Applications of stable mercury isotopes to biogeo-chemistry.
Handbook of Environmental I-sotope Geochemistry,2012:229-245
|
CSCD被引
1
次
|
|
|
|
8.
Hintelmann H. Use of stable isotopes for mercury research.
Mercury in the Environment: Pattern and Processes,2012:1-360
|
CSCD被引
1
次
|
|
|
|
9.
Blum J D. Mercury isotopes in earth and environmental sciences.
Annual Review of Earth and Planetary Sciences,2014,42:249-269
|
CSCD被引
39
次
|
|
|
|
10.
Yin R. Trends and advances in mercury stable isotope system as a geochemical tracer.
Trends in Environmental Analytical Chemistry,2014(2):1-10
|
CSCD被引
2
次
|
|
|
|
11.
Klaue B. Investigation of natural fractionation of stable mercury isotopes by multi-collector inductively coupled plasma mass spectrometry.
Proceedings of the Annual International Conference on Heavy Metals in the Environment,2000:1101
|
CSCD被引
2
次
|
|
|
|
12.
Lauretta D S. Mercury abundances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites.
Geochimica et Cosmochimica Acta,2001,65:2807-2818
|
CSCD被引
13
次
|
|
|
|
13.
Hintelmann H. High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multi-collector inductively coupled plasma mass spectrometry.
Analyst,2003,128:635-639
|
CSCD被引
9
次
|
|
|
|
14.
Jackson T. Historical variations in the stable isotope composition of mercury in Arctic Lake sediments.
Environmental Science & Technology,2004,38:2813-2821
|
CSCD被引
6
次
|
|
|
|
15.
Xie Q. High precision Hg isotope analysis of environmental samples using gold trap-MC-ICP-MS.
Journal of Analytical Atomic Spectrometry,2005,20:515-522
|
CSCD被引
4
次
|
|
|
|
16.
Foucher D. High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry.
Analytical and Bioanalytical Chemistry,2006,384:1470-1478
|
CSCD被引
18
次
|
|
|
|
17.
Sonke J E. Indirect gold trap-MC-ICP-MS coupling for Hg stable isotope analysis using a syringe injection interface.
Journal of Analytical Atomic Spectrometry,2008,23:569-573
|
CSCD被引
5
次
|
|
|
|
18.
Dzurko M. Determination of compound-specific Hg isotope ratios from transient signals using gas chromatography coupled to multicollector inductively coupled plasma mass spectrometry (MC-ICP/MS).
Analytical and Bioanalytical Chemistry,2009,393:345-355
|
CSCD被引
4
次
|
|
|
|
19.
Epov V N. Simultaneous determination of species-specific isotopic composition of Hg by gas chromatography coupled to multicollector ICP-MS.
Analytical Chemistry,2008,80:3530-3538
|
CSCD被引
3
次
|
|
|
|
20.
Blum J D. Reporting of variations in the natural isotopic composition of mercury.
Analytical and Bioanalytical Chemistry,2007,388:353-359
|
CSCD被引
31
次
|
|
|
|
|