激光诱导击穿光谱表征3D打印18Ni300模具钢表面硬度
Laser-induced breakdown spectroscopy characterizations of surface hardness of 3D printed 18Ni300 die steel
查看参考文献22篇
文摘
|
3D打印零件的表面硬度直接影响着其后续的运行安全和使用寿命,目前硬度的测量依赖于破坏性取样后的实验室分析,缺少无损和在线的硬度测量方法。采用激光诱导击穿光谱技术研究了3D打印18Ni300模具钢表面硬度和光谱特性与等离子体特性的关系。得到了样品表面硬度和离子谱线与原子谱线的强度比以及表面硬度和等离子体温度之间的线性关系,离子与原子谱线的强度比和等离子体温度均随着表面硬度的增加而增大。实验结果证明了激光诱导击穿光谱技术作为一种近无损和在线表征3D打印零件表面硬度的方法的可行性。 |
其他语种文摘
|
The surface hardness of 3D printed parts directly its subsequent operational safety and service life.Currently,the measurement of hardness relies on laboratory analysis after destructive sampling,and there is a lack of non-destructive and online hardness measurement methods.In the paper,laser induced breakdown spectroscopy(LIBS)was used to study the relationship between surface hardness of 3D printed 18Ni300 die steel and spectral characteristics as well as plasma characteristics.A linear relationship between the surface hardness and the intensity ratio of the ion line to the atomic line in the spectral data as well as a linear relationship between the surface hardness and the plasma temperature was obtained.The intensity ratio of the ion line to the atomic line and the plasma temperature increased with the increase of the surface hardness.The experimental results demonstrate the feasibility of laser induced breakdown spectroscopy as a near-nondestructive and on-line method to characterize the surface hardness of 3D printing parts. |
来源
|
激光与红外
,2020,50(6):668-674 【核心库】
|
DOI
|
10.3969/j.issn.1001-5078.2020.06.004
|
关键词
|
激光诱导击穿光谱
;
表面硬度
;
等离子体温度
;
模具钢
|
地址
|
1.
福建工程学院机械与汽车工程学院, 福建, 福州, 350118
2.
数字福建工业制造物联网实验室, 数字福建工业制造物联网实验室, 福建, 福州, 350118
3.
中国科学院安徽光学精密机械研究所, 安徽, 合肥, 230031
4.
华侨大学机电及自动化学院, 福建, 厦门, 361021
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-5078 |
学科
|
电子技术、通信技术 |
基金
|
福建工程学院科研基金项目
;
数字福建工业制造物联网实验室项目资助。
|
文献收藏号
|
CSCD:6760281
|
参考文献 共
22
共2页
|
1.
Takeshi Nagase. Additive manufacturing of dense components in beta-titanium alloys with crystallographic texture from a mixture of pure metallic element powders.
Materials & Design,2019,173:107771
|
CSCD被引
2
次
|
|
|
|
2.
Zhao X. Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing.
Journal of Materials Processing Technology,2019,270:8-19
|
CSCD被引
11
次
|
|
|
|
3.
MessaoudAberkane S. Effect of laser wavelength on the correlation between plasma temperature and surface hardness of Fe-V-C metallic alloys.
Spectrochimica Acta Part B: Atomic Spectroscopy,2015,113:147-151
|
CSCD被引
2
次
|
|
|
|
4.
Rezk R A. Quantitative analysis of Cu and Co adsorbed on fish bones via laser-induced breakdown spectroscopy.
Optics & Laser Technology,2016,83:131-139
|
CSCD被引
1
次
|
|
|
|
5.
陈添兵. 激光诱导击穿光谱结合PLS检测土壤中的铅.
激光与红外,2014,44(5):482-486
|
CSCD被引
10
次
|
|
|
|
6.
项丽蓉. 基于不同化学计量学方法的土壤重金属激光诱导击穿光谱定量分析研究.
光谱学与光谱分析,2017,37(12):3871-3876
|
CSCD被引
7
次
|
|
|
|
7.
Peeter Paris. Determination of elemental depth profiles by multi-spot averaging technique of LIBS spectra.
Fusion Engineering and Design,2011,86:1125-1128
|
CSCD被引
1
次
|
|
|
|
8.
Qu Yingfei. Real-time in situ detection of the local air pollution with laser-induced breakdown spectroscopy.
Optics Express,2019,27(12):A790-A799
|
CSCD被引
8
次
|
|
|
|
9.
贾军伟. 水分含量对激光诱导岩屑等离子体特性的影响.
光子学报,2018,47(8):0847004
|
CSCD被引
2
次
|
|
|
|
10.
Abdel-Salam Z A. Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra.
Spectrochimica Acta Part B,2007,62:1343-1347
|
CSCD被引
8
次
|
|
|
|
11.
Cowpe J S. Hardness determination of bio-ceramics using Laser-Induced Breakdown Spectroscopy.
Spectrochimica Acta Part B,2011,66:290-294
|
CSCD被引
4
次
|
|
|
|
12.
Messaoud Aberkane S. Correlation between Fe-V-C alloys surface hardness and plasma temperature via LIBS technique.
Applied Surface Science,2014,301:225-229
|
CSCD被引
10
次
|
|
|
|
13.
Huang Jianwei. Estimation of the mechanical properties of steel via LIBS combined with canonical correlation analysis(CCA) and support vector regression(SVR).
Journal of Analytical Atomic Spectrometry,2018,33(5):673-910
|
CSCD被引
18
次
|
|
|
|
14.
李俊彦. 不同硬度受热面材料的激光诱导等离子体光谱特性分析.
中国激光,2011,38(8):0815002
|
CSCD被引
6
次
|
|
|
|
15.
Marpaung A M. Shock wave plasma induced by TEA CO_2 laser bombardment on glass samples at high pressures.
Spectrochimica Acta Part B,2000,55:1591-1599
|
CSCD被引
4
次
|
|
|
|
16.
Tsuyuki K. Measurements of concrete strength using the emission intensity ratio between Ca II 396.8 nm and Ca I 422.6 nm in a Nd: YAG laser induced plasma.
Applied Spectroscopy,2006,60:61-64
|
CSCD被引
14
次
|
|
|
|
17.
Li Yu. Spectroscopic characterization of aluminum plasma using laser-induced breakdown spectroscopy.
Optik,2014,125:2851-2855
|
CSCD被引
1
次
|
|
|
|
18.
Kaleem Ahmad. Kadachi. Characterization of alumina-based ceramic nanocomposites by laser-induced breakdown spectroscopy.
Appl. Phys. A,2015,119:1223-1229
|
CSCD被引
1
次
|
|
|
|
19.
ElFaham Mohamed M. Comparative study of LIBS and mechanically evaluated hardness of graphite/rubber composites.
Materials Chemistry and Physics,2018,207:30-35
|
CSCD被引
3
次
|
|
|
|
20.
唐惠娟. 激光诱导Cu等离子体光谱时间演化特性研究.
激光与红外,2018,48(11):1341-1345
|
CSCD被引
1
次
|
|
|
|
|