基于离散等收缩比的前体/进气道流向双乘波一体化设计
INTEGRATED DESIGN OF FOREBODY/INLET WITH DUAL-WAVERIDER IN THE STREAM DIRECTION BASED ON DISCRETE ISO-CONTRACTION RATIO
查看参考文献31篇
文摘
|
前体/进气道一体化设计是高超声速飞行的关键技术,一体化设计的核心是前体与进气道在基准流场上的气动融合.针对腹部进气布局中前体压缩后的非均匀流影响进气道性能的问题,文章基于局部收缩比处处一致的思想,提出了离散等收缩比设计方法,实现了乘波前体/内转式进气道流向气动融合与遵循气动规律的变截面流道设计.将进气道的三维流场分解成一簇具有相同收缩比的三维流管,视每根流管侧壁为轴对称流场;以锥导乘波前体压缩后的非均匀流作为来流条件,以总压恢复为目标对每根流管进行优化设计;通过匹配激波反射位置将流管重新组合起来,流管的对应边界组成内转式变截面进气道.该设计方法适配任何已知的非均匀来流,可灵活控制唇口位置,且适用于任意形状之间的变截面转换.数值研究表明,依托该方法设计的一体化构型性能符合预期,出口流场均匀,具有优越的抗反压能力,且非设计点流场波系结构良好.离散等收缩比设计方法为腹部进气布局中前体/进气道一体化气动融合设计提供了新思路. |
其他语种文摘
|
The integrated forebody/inlet design is an essential enabler for air vehicles targeting hypersonic flight regimes. The crux of this integrated design lies in achieving the aerodynamic fusion between the forebody and inlet in the baseline flow field. Based on the idea of the discrete equal contraction ratio consistent everywhere, this study puts forward a novel discrete iso-contraction ratio design approach to mitigate the detrimental impact of nonuniform flow induced by compression of the forebody on inlet performance in a ventral inlet configuration. This proposed method successfully attains the targeted aerodynamic fusion design between the waverider forebody and inward-turning inlet flows in conjunction with an aerodynamically-contoured variable cross-section duct design. In the proposed way, a threedimensional inlet flowfield is decomposed into a bundle of three-dimensional flow tubes, which share identical contraction ratios. The side wall of each stream tube is treated as a virtual axisymmetric flowfield, and we optimize each three-dimensional stream tube by taking the nonuniform flow compressed by the conical-derived waverider forebody as design conditions and total pressure recovery as the design objective. These three-dimensional tubes are recombined into an inward-turning, variable cross-section inlet configuration by aligning shock reflection locations in the flow direction, with the respective three-dimensional tube boundaries forming the inlet contours. This design approach accommodates any given nonuniform inlet flow, allows flexible control over lip positioning, and enables variable cross-section transitions between arbitrary geometries. The numerical study is performed to preliminarily investigate the performance of the integrated configuration of waverider forebody and inward-turning inlet, and the results validate that the integrated configuration developed using this proposed method meets anticipated performance, evidenced by a uniform outlet flow and enhanced resistance to unstart. Favorable flow structures are also maintained at off-design conditions. This discrete iso-contraction ratio design methodology offers new perspectives on enabling aerodynamic fusion for integrated forebody/inlet designs in ventral inlet layouts. |
来源
|
力学学报
,2023,55(12):2844-2856 【核心库】
|
DOI
|
10.6052/0459-1879-23-400
|
关键词
|
高超声速前体/进气道
;
一体化
;
离散等收缩比
;
流管划分
;
双乘波
|
地址
|
1.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
2.
重庆交通大学航空学院, 重庆, 400074
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
航空 |
文献收藏号
|
CSCD:7666200
|
参考文献 共
31
共2页
|
1.
黄志澄. 高超声速大博弈.
太空探索,2014,5:22-27
|
CSCD被引
1
次
|
|
|
|
2.
岳连捷. 高马赫数超燃冲压发动机技术研究进展.
力学学报,2022,54(2):263-288
|
CSCD被引
16
次
|
|
|
|
3.
罗世彬. 高超声速乘波前体/进气道一体化设计综述.
空天技术,2022,6:24-48
|
CSCD被引
2
次
|
|
|
|
4.
Ding F. Novel approach for design of a waverider vehicle generated from axisymmetric supersonic flows past a pointed von Karman ogive.
Aerospace Science and Technology,2015,42:297-308
|
CSCD被引
12
次
|
|
|
|
5.
孟宇鹏. 超声速颌下乘波进气道一体化设计.
推进技术,2018,39(8):1720-1727
|
CSCD被引
4
次
|
|
|
|
6.
Heiser W H.
Pratt. Hypersonic Airbreathing Population,1994:197-267
|
CSCD被引
1
次
|
|
|
|
7.
蔡国飚.
高超声速飞行器技术,2012
|
CSCD被引
6
次
|
|
|
|
8.
Smith T R.
Integrated hypersonic inlet design: UAS, 08256706 B1,2012
|
CSCD被引
1
次
|
|
|
|
9.
崔凯. 双旁侧进气高超声速飞机概念设计与评估.
中国科学:科学技术,2013,43(10):1085-1093
|
CSCD被引
4
次
|
|
|
|
10.
Langener T.
Preliminary performance analysis of the LAPCAT-MR2 by means of nose-to-tail computations. AIAA-2012-5872,2012
|
CSCD被引
1
次
|
|
|
|
11.
Spravka J J. Current hypersonic and space vehicle flight test and instrumentation.
Air Force Test Center Edwards,2015,15:15264
|
CSCD被引
1
次
|
|
|
|
12.
郭宇辰.
SR-72高超声速无人侦察机三维重建及其气动特性分析.[硕士论文],2016
|
CSCD被引
1
次
|
|
|
|
13.
杨青格. 俄罗斯"锆石"高超声速导弹研究进展.
中国航天,2022,11:61-65
|
CSCD被引
1
次
|
|
|
|
14.
黄河峡. 高超声速进气道/隔离段内流特性研究进展.
推进技术,2018,39(10):2252-2273
|
CSCD被引
17
次
|
|
|
|
15.
乔文友. 基于前体激波的内转式进气道一体化设计.
航空学报,2018,39(10):65-76
|
CSCD被引
1
次
|
|
|
|
16.
Zhang W H. Novel integration methodology for an inward turning waverider forebody/inlet.
Applied Physics & Engineering,2019,20(12):918-926
|
CSCD被引
1
次
|
|
|
|
17.
乔文友.
可排除前体低能量的高超声速三维内收缩式进气道研究.[博士论文],2015
|
CSCD被引
1
次
|
|
|
|
18.
He X Z. Osculating inward turning cone waverider/inlet (OICWI) design methods.
18th AIAA/3AF International Planes and Hypersonic Systems and Technology Conference. AIAA 2012-5810,2012
|
CSCD被引
1
次
|
|
|
|
19.
Smart M K. Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition.
AIAA Journal of Power and Propulsion,2004,20(2):288-293
|
CSCD被引
1
次
|
|
|
|
20.
南向军. 矩形转圆形高超声速内收缩进气道数值及试验研究.
航空学报,2011,32(6):988-996
|
CSCD被引
31
次
|
|
|
|
|