帮助 关于我们

返回检索结果

基于符号价格极差的金融资产波动率预测研究
The application of signed range to forecasting the volatility of financial

查看参考文献55篇

文摘 从价格极差在补充波动率预测方面的优秀表现和收益率符号信息在资本市场的广泛运用出发,本文将价格极差与收益率符号结合起来,构建了符号价格极差这一影响因子,并加入到4个主流的HAR模型中.基于上证综指的5分钟高频交易数据的实证结果表明:符号价格极差短期内对未来波动率影响显著且具有“非对称性”,负(正)的符号价格极差导致未来波动率明显提高(降低);样本外预测结果显示,引入符号价格极差能够显著提高模型的预测能力且结果是稳健的,其中HAR-RSV-SR模型和HAR-Q-SR模型分别在对短期(1天)和中长期(5天和20天)的未来波动率预测中,表现出最高的预测精度.本文的结论对于波动率在资产定价和风险管理上的应用有着重要的参考价值.
其他语种文摘 Due to the excellent performance of range in improving volatility forecast and the wide-spread use of information based on the sign of return in the capital market, this paper constructs the signed range by combining range and the sign of return and introduces it into four mainstream HAR models. The empirical results based on the 5-minute high-frequency trading data of the Shanghai Composite Index indicate that signed range has a significant "asymmetric" impact on future volatility in the short term, with negative (positive) signed range leading to significantly higher (lower) future volatility. The out-of-sample prediction results show that the introduction of singed range can significantly improve the model's predictive ability, and the results are robust. Last but not least, HAR-RSV-SR model and HAR-Q-SR model are the best models in short and medium and long horizons than others models discussed in this paper. The conclusion of this article has important reference value for the application of volatility in asset pricing and risk management.
来源 系统工程理论与实践 ,2021,41(9):2256-2270 【核心库】
DOI 10.12011/SETP2020-1181
关键词 波动率预测 ; HAR-RV模型 ; 符号价格极差 ; MCS检验
地址

湖南大学金融与统计学院, 长沙, 410006

语种 中文
文献类型 研究性论文
ISSN 1000-6788
学科 社会科学总论
基金 国家自然科学基金国际合作与交流项目 ;  湖南省社会科学基金
文献收藏号 CSCD:7066957

参考文献 共 55 共3页

1.  Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica,1982,50(4):987-1007 CSCD被引 418    
2.  Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics,1986,21(3):307-328 CSCD被引 475    
3.  Taylor S J. Modelling financial time series,1986 CSCD被引 16    
4.  Andersen T G. Deutsche mark-dollar volatility: Intraday activity patterns, macroeconomic announcements, and longer run dependencies. Journal of Finance,1998,53(1):219-265 CSCD被引 23    
5.  Barndorff-Nielsen O E. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society,2002,64(2):253-280 CSCD被引 34    
6.  Muller U A. Fractals and intrinsic time: A challenge to econometricians. Social Science Electronic Publishing,1993 CSCD被引 1    
7.  Corsi F. A simple approximate long-memory model of realized-volatility. Journal of Financial econometrics,2009,7(2):174-196 CSCD被引 78    
8.  Andersen T G. Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. Review of Economics & Statistics,2007,89(4):701-720 CSCD被引 64    
9.  Barndorff-Nielsen O E. Power and bipower variation with stochastic volatility and jumps. Journal of financial econometrics,2004,2(1):1-37 CSCD被引 112    
10.  Barndorff-Nielsen O E. Econometrics of testing for jumps in financial economics using bipower variation. Journal of Financial Econometrics,2006,4(1):1-30 CSCD被引 112    
11.  文凤华. 基于LHAR-RV-V模型的中国股市波动性研究. 管理科学学报,2012,15(6):59-67 CSCD被引 18    
12.  陈浪南. 中国股市高频波动率的特征、预测模型以及预测精度比较. 系统工程理论与实践,2013,33(2):296-307 CSCD被引 24    
13.  Barndorff-Nielsen O E. Measuring downside risk-realised semivariance. Working Paper,2008 CSCD被引 1    
14.  Patton A J. Good volatility, bad volatility: Signed jumps and the persistence of volatility. Review of Economics and Statistics,2015,97(3):683-697 CSCD被引 34    
15.  Bollerslev T. Exploiting the errors: A simple approach for improved volatility forecasting. Journal of Econometrics,2016,192(1):1-18 CSCD被引 15    
16.  Wang Y. Forecasting realized volatility in a changing world: A dynamic model averaging approach. Journal of Banking & Finance,2016,64(1):136-149 CSCD被引 11    
17.  Andersen T G. The distribution of realized exchange rate volatility. Journal of the American Statistical Association,2001,96(1):42-55 CSCD被引 50    
18.  Bandi F M. Microstructure noise, realized variance, and optimal sampling. The Review of Economic Studies,2008,75(2):339-369 CSCD被引 12    
19.  Bandi F M. Separating microstructure noise from volatility. Journal of Financial Economics,2006,79(3):655-692 CSCD被引 18    
20.  Yacine A S. How often to sample a continuous-time process in the presence of market microstructure noise. The Review of Financial Studies,2005,18(2):351-416 CSCD被引 13    
引证文献 3

1 万谍 期权交易量能预测波动率吗——来自上证50ETF期权的证据 系统工程理论与实践,2023,43(3):755-771
CSCD被引 1

2 赵华 中国股市高频配对交易研究:基于Levy-OU过程 系统工程理论与实践,2023,43(8):2251-2265
CSCD被引 1

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号