隔离段抽吸引起的激波迟滞现象研究
Investigation on Shock Wave Hysteresis in Isolator Caused by Wall Suction
查看参考文献25篇
文摘
|
为了研究壁面抽吸条件下隔离段流动迟滞现象,采用数值模拟和理论分析相结合的方法,模拟反压升高再降低过程,对隔离段的激波形态进行了研究。基于Zhukoski提出的中等雷诺数下(3×10~4<[Reδ]<1.2×10~6)分离区压力与马赫数的量化关系,发展了无控制措施条件下激波串首道激波的理论模型,发现来流马赫数大于2.0时激波串首道激波反射类型为规则反射,且不会出现激波反射迟滞现象。而壁面抽吸使首道激波固定在抽吸缝位置,导致激波串首道激波强度随反压升高不断增强,边界层分离角和激波角不断增大,从而进入Von Neumann准则的双解区甚至马赫反射区,在升高及降低反压的过程中隔离段出现流动迟滞现象。研究结果进一步揭示了壁面抽吸引起的流动迟滞现象不仅包含常规RR?MR激波反射迟滞,而且包含了一种新的迟滞现象--边界层分离迟滞。 |
其他语种文摘
|
In order to study the hysteresis in the isolator flow caused by wall suction,theoretical analysis and numerical calculation are carried out to simulate the process that the back pressure raises and subsequently drops in this paper. Based on the quantitative correlation between the free stream Mach number and the separation pressure proposed by Zhukoski,a theoretical model regarding the first shock of the shock train is developed under the condition of moderate Reynolds number (3×10~4<[Reδ]<1.2×10~6) without any control measures. It is revealed that only a regular reflection is theoretically possible for the first shock when the entrance flow Mach number is greater than 2.0 and no hysteresis phenomenon can occur. Nevertheless,the wall suction can stabilize the first shock foot by bleeding the boundary layer,resulting in an increasing of separation angle and shock wave angle with back pressure rising. As a result,the flow deflection angle is in the double solution domain of the Von Neumann criteria and a hysteresis in the RR?MR transition occurs once. The results further exhibit a new hysteresis in boundary layer separation which is induced by the back pressure. |
来源
|
推进技术
,2017,38(4):732-739 【核心库】
|
DOI
|
10.13675/j.cnki.tjjs.2017.04.002
|
关键词
|
超燃冲压发动机
;
隔离段
;
激波反射迟滞
;
边界层分离迟滞
|
地址
|
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4055 |
学科
|
航空 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5965320
|
参考文献 共
25
共2页
|
1.
Mach E. Uber den Verlauf von Funkenwellen in der Ebeneund im Raume.
Sitzugsbr Akad Wiss Wien,1878,78:819-838
|
CSCD被引
6
次
|
|
|
|
2.
Von Neumann J.
Oblique Reflection of Shocks. Explos Res Report 12,1943
|
CSCD被引
1
次
|
|
|
|
3.
Von Neumann J.
Refraction, Intersection and Reflection of Shock Waves. Navord Report 203-45,1943
|
CSCD被引
2
次
|
|
|
|
4.
Hornung H G. Transition to Mach Reflection of Shock Waves in Steady and Pseudosteady Flow with and without Relaxation.
Journal of Fluid Mechanics,1979,90(3):541-560
|
CSCD被引
8
次
|
|
|
|
5.
Hornung H G. Transition from Regular to Mach Reflection of Shock Waves.
Journal of Fluid Mechanics,1982,123:155-164
|
CSCD被引
10
次
|
|
|
|
6.
Chpoun A. Reconsideration of Oblique Shock Wave Reflection in Steady Flows.
Journal of Fluid Mechanics,1995,301:19-35
|
CSCD被引
12
次
|
|
|
|
7.
Ivanov M S. Hysteresis Effect in Stationary Reflection of Shock Waves.
Physics of Fluids,1995,7(4):685-686
|
CSCD被引
4
次
|
|
|
|
8.
曲亮.
超然冲压发动机燃烧模态分类技术研究,2008
|
CSCD被引
1
次
|
|
|
|
9.
于田.
超燃冲压发动机模态转换突变特性研究,2009
|
CSCD被引
2
次
|
|
|
|
10.
Shuchi Ueda.
Mach 6 Test of a Scramjet Engine with Multi-Staged Fuel Injection. AIAA 2006-1027
|
CSCD被引
1
次
|
|
|
|
11.
Rockwell Robert D. Experimental Study of Test-Medium Vitiation Effects on Dual-Mode Scramjet Performance.
Journal of Propulsion and Power,2011,22(4):1135-1142
|
CSCD被引
11
次
|
|
|
|
12.
Bao Wen. Dynamic Characteristics of Combustion Mode Transitions in a Strut-Based Scramjet Combustor Mode.
Journal of Propulsion and Power,2013,29(5):1244-1248
|
CSCD被引
11
次
|
|
|
|
13.
Zhang Yan. Influencing Factors on the Mode Transition in a Dual Mode Ramjet.
Acta Stronautica,2014,103:1-15
|
CSCD被引
9
次
|
|
|
|
14.
张岩. 双模态冲压发动机中的模态转换研究综述.
推进技术,2013,34(12):1719-1728
|
CSCD被引
12
次
|
|
|
|
15.
Ikui T. The Mechanism of Pseudo-Shock Waves.
Bull of the JSME,1974,17(108):731-739
|
CSCD被引
8
次
|
|
|
|
16.
Ikui T. Modified Diffusion Model of Pseudo-Shock Waves Considering Upstream Boundary Layers.
Bull of the JSME,1981,24(197):1920-1927
|
CSCD被引
6
次
|
|
|
|
17.
Kim H D.
An Experimental Study of Weak Normal Shock-Wave/Turbulent Boundary Interaction in Internal Flows,1991
|
CSCD被引
1
次
|
|
|
|
18.
Nussdorfer T J.
Some Observations of Shock-Induced Turbulent Separation on Supersonic Diffusers. NACA Research Memorandum E51L26,1954
|
CSCD被引
1
次
|
|
|
|
19.
王成鹏. 非对称来流隔离段流动特性研究.
推进技术,2006,27(5):436-440
|
CSCD被引
11
次
|
|
|
|
20.
Weiss A. Behavior of a Shock Train under the Influence of Boundary-Layer Suction by a Normal Slot.
Experiments in Fluids,2012,52(2):273-287
|
CSCD被引
10
次
|
|
|
|
|