南秦岭黄羊山贫矿碱性岩体地球化学特征和成因及其与成矿岩体的对比研究:对区域稀土成矿的指示意义
Geochemical Characteristics and Petrogenesis of the REE-barren Huangyangshan Alkaline Intrusion in the South Qinling,Central China and the Comparative Study to the REE Mineralized Intrusions: Implication for the Regional REE Mineralization
查看参考文献67篇
文摘
|
南秦岭分布有一系列志留纪碱性岩体,其稀土矿化程度有明显差异,原因不明。本文聚焦研究较为薄弱的贫矿岩体(黄羊山岩体),开展了岩石学、元素地球化学和同位素年代学分析测试,以期通过与成矿岩体(庙垭+杀熊洞)对比揭示稀土成矿差异的原因。结果表明,黄羊山岩体(正长岩和碱性花岗岩)形成于(438.8±3.7)Ma,岩石具过碱质、高钾钙碱性-钾玄岩特征;具有右倾的球粒陨石标准化稀土配分曲线和Eu负异常;微量元素蛛网图显示Eu、Ba和Sr负异常但无高场强元素异常;具高的Zr和Nb含量、Ga /Al比值和锆石饱和温度(~ 830 ℃),与典型A型花岗岩类相似; ε_(Nd)(t)值为2.31~ 3.43,与区域上同期幔源基性岩类似。结合相关地球化学特征,约束其来源于新生的基性地壳,不同于来源富集地幔的同期成矿正长岩体。对比研究显示,贫矿岩体与成矿岩体的岩浆源区不同,这可能是导致南秦岭不同碱性岩体在地球化学特征及稀土含矿性上存在差异的关键因素。 |
其他语种文摘
|
The key factors controlling obviously different degrees of REE mineralization(fertile and barren)among a series of Silurian alkaline intrusions distributed in the South Qinling orogenic belt have long been poorly understood. In this paper,we have conducted a combined petrological,geochemical,and isotopic investigation of the REE-barren Huangyangshan alkaline pluton,in order to make a comprehensive comparison with REE-mineralized intrusions(the Miaoya and Shaxiongdong)and then to explore the reason why there is obvious difference among those intrusions in terms of the REE mineralization. Our results show that rocks(syenite and alkaline granite)of the Huangyangshan intrusion,which was formed in 438.8 ± 3.7 Ma,have peralkaline,shoshonitic and high-K calc-alkaline characteristics. They have rightdeclined(LREE-rich)chondrite-normalized REE distribution patterns with negative Eu anomalies,obvious depletion of Eu,Ba,and Sr but weak HSFEs anomalies in the primitive mantle-normalized trace-elemental spider diagrams,and have high Zr and Nb contents,high Ga /Al ratios,and high zircon saturation temperatures(~ 830 ℃). They are similar to the typical A-type granite. The Huangyangshan alkaline rocks have ε_(Nd)(t)values of 2.31~ 3.43 which are similar to those of the contemporaneous mantle-derived mafic rocks in the region. In combination with related geochemical features of these rocks,it is constrained that their parental magmas could be derived from partial melting of juvenile crustal mafic rocks. They are different from the contemporaneous REE-mineralized syenite which was derived from enrich mantle(EM I). The comparison of barren and mineralized intrusions show that they were derived from different magma sources. Thus,it is believed that the different magma sources of different alkaline intrusions in the South Qinling orogenic belt could be key factors resulting in their different geochemical characteristics and different properties of the REE mineralization. |
来源
|
矿物岩石地球化学通报
,2022,41(3):488-504 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2022.41.029
|
关键词
|
碱性岩
;
岩石成因
;
稀土成矿差异性
;
黄羊山岩体
;
南秦岭
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
中科院前沿科学重点项目
;
国家重点研发计划项目
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:7247656
|
参考文献 共
67
共4页
|
1.
Abdallsamed M I M. Paleozoic peralkaline A-type magmatism of the Tongbai Orogen, Central China: Petrogenesis and tectonic implications.
Lithos,2018,322:268-280
|
CSCD被引
4
次
|
|
|
|
2.
Ahmed H A. Petrogenesis and tectonic implications of Peralkaline A-type granites and syenites from the Suizhou-Zaoyang region,central China.
Journal of Earth Science,2018,29(5):1181-1202
|
CSCD被引
6
次
|
|
|
|
3.
Belousova E. Igneous zircon: Trace element composition as an indicator of source rock type.
Contributions to Mineralogy and Petrology,2002,143(5):602-622
|
CSCD被引
1126
次
|
|
|
|
4.
Bonin B. A-type granites and related rocks: Evolution of a concept,problems and prospects.
Lithos,2007,97(1/2):1-29
|
CSCD被引
333
次
|
|
|
|
5.
Chen W. Radiogenic Pb reservoir contributes to the rare earth element (REE) enrichment in South Qinling carbonatites.
Chemical Geology,2018,494:80-95
|
CSCD被引
8
次
|
|
|
|
6.
Cimen O. Boron,carbon,oxygen and radiogenic isotope investigation of carbonatite from the Miaoya complex,Central China: Evidences for late-stage REE hydrothermal event and mantle source heterogeneity.
Lithos,2018,322:225-237
|
CSCD被引
8
次
|
|
|
|
7.
Collins W J. Nature and origin of A-type granites with particular reference to southeastern Australia.
Contributions to Mineralogy and Petrology,1982,80(2):189-200
|
CSCD被引
801
次
|
|
|
|
8.
Cui H. Forming sulfate-and REE-rich fluids in the presence of quartz.
Geology,2020,48(2):145-148
|
CSCD被引
10
次
|
|
|
|
9.
Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications.
Geology,1992,20(7):641-644
|
CSCD被引
838
次
|
|
|
|
10.
Griffin W L. Zircon chemistry and magma mixing,SE China: In-situ analysis of Hf isotopes,Tonglu and Pingtan igneous complexes.
Lithos,2002,61(3/4):237-269
|
CSCD被引
768
次
|
|
|
|
11.
Hoskin P W O. Patterns of chaos: Fractal statistics and the oscillatory chemistry of zircon.
Geochimica et Cosmochimica Acta,2000,64(11):1905-1923
|
CSCD被引
17
次
|
|
|
|
12.
Hou Z Q. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments.
Scientific Reports,2015,5(1):10231
|
CSCD被引
49
次
|
|
|
|
13.
Hu Z C. "Wave"signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis.
Analytical Chemistry,2015,87(2):1152-1157
|
CSCD被引
140
次
|
|
|
|
14.
Karsli O. Adakite-like granitoid porphyries in the Eastern Pontides,NE Turkey: Potential parental melts and geodynamic implications.
Lithos,2011,127(1/2):354-372
|
CSCD被引
6
次
|
|
|
|
15.
Kemp A I S. Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia.
Geology,2005,33(10):797-800
|
CSCD被引
34
次
|
|
|
|
16.
King P L. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt,southeastern Australia.
Journal of Petrology,1997,38(3):371-391
|
CSCD被引
561
次
|
|
|
|
17.
Liu Y S. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.
Chemical Geology,2008,257(1/2):34-43
|
CSCD被引
1843
次
|
|
|
|
18.
Liu Y S. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths.
Journal of Petrology,2010,51(1/2):537-571
|
CSCD被引
1633
次
|
|
|
|
19.
Lu J. Apatite texture and trace element chemistry of carbonatite-related REE deposits in China: Implications for petrogenesis.
Lithos,2021,398/399:106276
|
CSCD被引
4
次
|
|
|
|
20.
Ludwig K R.
ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel,2003:70
|
CSCD被引
5
次
|
|
|
|
|