禾谷镰孢半胱天冬氨酸酶FgCas4的生物学功能
Biological function of the caspase FgCas4 in Fusarium graminearum
查看参考文献38篇
文摘
|
半胱天冬氨酸酶(caspase)在哺乳动物中参与调控细胞凋亡过程,控制着多种疾病的发生发展。本研究利用基因敲除和回补的方法,获得了禾谷镰孢中半胱天冬氨酸酶基因FgCas4的敲除突变体ΔFgCas4和回补体ΔFgCas4-C。通过观察分析发现,基因FgCas4的缺失并不影响禾谷镰孢(Fusarium graminearum)的生长速率、菌落形态、分生孢子产量、致病和产毒。但是,敲除突变体ΔFgCas4的菌丝分支变多且具有3个隔膜的分生孢子比例较野生型和回补体增加了8.7%。对外界环境胁迫因子耐受性测定显示,ΔFgCas4对杀菌剂和金属离子的敏感性显著增加,同时其细胞内脂滴含量增多,对渗透胁迫因子抗性变强。亚细胞定位发现,半胱天冬氨酸酶FgCas4定位于液泡中。此外,基因FgCas4的缺失导致F. graminearum细胞自噬过程明显提前。上述研究结果表明,F. graminearum中半胱天冬氨酸酶FgCas4主要在菌体无性繁殖、对不同环境胁迫的应答以及细胞自噬过程中发挥重要作用。 |
其他语种文摘
|
Caspase is known to be involved in modulating apoptosis in mammals,controlling the occurrence and development of various diseases. In present study, the null mutant ΔFgCas4 and complemented strain ΔFgCas4-C of the caspase gene FgCas4 were obtained by gene disruption and complementation respectively in Fusarium graminearum. We observed that the FgCas4 deletion mutant (ΔFgCas4) did not affect the growth rate, colony morphology, conidiation, virulence and DON production. However, the deletion mutant ΔFgCas4 exhibited more hyphal branching and percentage of conidia with 3 septa increased by 8.7% compared to wild type PH-1 and complemented strain ΔFgCas4-C. External environmental stress assays showed that the gene disrupt mutant ΔFgCas4 became more sensitive to tested fungicides and metal ions. In addition, the lack of FgCas4 led to dramatically increased lipid droplet biosynthesis as well as increased resistance to osmotic stress agents. Subcellular localization showed that the caspase FgCas4 localized in vacuoles. On the other, the loss of FgCas4 resulted in earlier process of autophagy. Taken together, our study provides evidences that the caspase FgCas4 of Fusarium graminearum plays important roles in asexual reproduction, various environmental stress responses and autophagy regulation. |
来源
|
植物病理学报
,2024,54(2):332-342 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000876
|
关键词
|
禾谷镰孢
;
半胱天冬氨酸酶FgCas4
;
无性繁殖
;
环境胁迫
;
细胞自噬
|
地址
|
安徽农业大学植物保护学院, 作物有害生物综合治理安徽省重点实验室, 合肥, 230036
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
安徽省大学生创新创业训练计划项目
|
文献收藏号
|
CSCD:7863497
|
参考文献 共
38
共2页
|
1.
Goswami R S. Heading for disaster: Fusarium graminearum on cereal crops.
Molecular Plant Pathology,2004,5(6):515-525
|
CSCD被引
2
次
|
|
|
|
2.
Bai G H. Management and resistance in wheat and barley to Fusarium head blight.
Annual Review of Phytopathology,2004,42:135-161
|
CSCD被引
125
次
|
|
|
|
3.
Starkey D E. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity.
Fungal Genetics and Biology,2007,44(11):1191-1204
|
CSCD被引
31
次
|
|
|
|
4.
Chen Y. Current situation and management strategies of Fusarium head blight in China (in Chinese).
植物保护,2017,43(5):11-17
|
CSCD被引
8
次
|
|
|
|
5.
Pestka J J. Deoxynivalenol: toxicology and potential effects on humans.
Journal of Toxicology and Environmental Health, Part B Critical Reviews,2005,8(1):39-69
|
CSCD被引
64
次
|
|
|
|
6.
Qiu J B. Fusarium toxins in Chinese wheat since the 1980s.
Toxins,2019,11:248
|
CSCD被引
17
次
|
|
|
|
7.
Van Egmond H P. Regulations relating to mycotoxins in food: perspectives in a global and European context.
Analytical and Bioanalytical Chemistry,2007,389(1):147-157
|
CSCD被引
2
次
|
|
|
|
8.
Lee H J. Worldwide occurrence of mycotoxins in cereals and cereal derived food products: public health perspectives of their co-occurrence.
Journal of Agricultural and Food Chemistry,2017,65(33):7034-7051
|
CSCD被引
2
次
|
|
|
|
9.
Launay S. Vital functions for lethal caspases.
Oncogene,2005,24(33):5137-5148
|
CSCD被引
10
次
|
|
|
|
10.
Salvesen G S. Caspase mechanisms.
Advances in Experimental Medicine and Biology,2008,615:13-23
|
CSCD被引
1
次
|
|
|
|
11.
Kumawat K L. Acute exposure to lead acetate activates microglia and induces subsequent bystander neuronal death via caspase-3 activation.
Neurotoxicology,2014,41:143-153
|
CSCD被引
6
次
|
|
|
|
12.
Shi J J. Pyroptosis: gasderminmediated programmed necrotic cell death.
Trends in Biochemical Sciences,2017,42(4):245-254
|
CSCD被引
6
次
|
|
|
|
13.
Qi D S. Neuroprotection of cilostazol against ischemia/reperfusion-induced cognitive deficits through inhibiting JNK3/caspase-3 by enhancing Akt1.
Brain Research,2016,1653:67-74
|
CSCD被引
1
次
|
|
|
|
14.
Gurung P. Novel roles for caspase-8 in IL-1β and inflammasome regulation.
The American Journal of Pathology,2015,185(1):17-25
|
CSCD被引
2
次
|
|
|
|
15.
Kamada S. Involvement of caspase-4 (-like) protease in Fasmediated apoptotic pathway.
Oncogene,1997,15(3):285-290
|
CSCD被引
5
次
|
|
|
|
16.
Yamamuro A. Caspase-4 directly activates caspase-9 in endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells.
Journal of Pharmacological Sciences,2011,115(2):239-243
|
CSCD被引
1
次
|
|
|
|
17.
Cao Y Y. Candida albicans cells lacking CaMCA1-encoded metacaspase show resistance to oxidative stress-induced death and change in energy metabolism.
Fungal Genetics and Biology,2009,46(2):183-189
|
CSCD被引
1
次
|
|
|
|
18.
Madeo F. A caspase-related protease regulates apoptosis in yeast.
Molecular Cell,2002,9(4):911-917
|
CSCD被引
1
次
|
|
|
|
19.
Richie D L. The Aspergillus fumigatus metacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress.
Molecular Microbiology,2007,63(2):591-604
|
CSCD被引
1
次
|
|
|
|
20.
Thrane C. Activation of caspase-like activity and poly (ADPribose) polymerase degradation during sporulation in Aspergillus nidulans.
Fungal Genetics and Biology,2004,41(3):361-368
|
CSCD被引
2
次
|
|
|
|
|