20SiMn在蒸馏水和3%NaCl溶液中的空蚀行为
Cavitation erosion behavior of 20SiMn low alloy steel in distilled water and 3% sodium chloride solution
查看参考文献14篇
文摘
|
利用磁致伸缩空蚀实验机研究了20SiMn低合金钢在蒸馏水和3%NaCl溶液中的空蚀行为。利用扫描电镜(SEM)跟踪观察了试样表面的空蚀形貌,测量了静态和空蚀条件下的极化曲线和腐蚀电位变化,分析了腐蚀因素的影响。结果表明:空蚀使20SiMn的自腐蚀电位正移近200 mV,使电化学腐蚀速率增大54倍;3%NaCl溶液中最大失重率约为蒸馏水中的3倍。两种介质中的空蚀形貌相似,空蚀破坏首先在铁素体相以及相界和晶界发生,在空蚀初期,材料的失重主要来源于铁素体相区的小片剥落,随着空蚀的进行,由于裂纹的扩展和连接导致材料大块脱落。 |
其他语种文摘
|
The cavitation erosion behavior of ZOSiMn low alloy steel in both distilled water and 3 % NaCl solution was investigated by using a magnetostrictive - induced cavitation facility. The micrographs of damaged surfaces were observed by scanning electron microscope (SEM) .The role of corrosion was analyzed by the measurements of polarization curve and free - corrosion potential with or without cavitation. The results showed that the cavitation shifted free corrosion potential to the positive direction by 200 mV.The electrochemical corrosion rate in the presence of cavitation was 53 times higher than that in absence of cavitation. The maximum cavitation erosion rate in 3% NaCl solution was almost three times as fast as that in distilled water, while the morphologies of damaged surfaces in 3% NaCl solution were similar to that in distilled water. The ferrite area, grain boundaries and ferrite - pearlite phase boundaries were preferential sites for cavitation attack, -which attributed to the low hardness of ferrite phase. The mass loss came from the detachment of small pieces in the ferrite area in the early stage and from the removal of massive chunks by the propagation and connection of cracks in both ferrite and pearlite area in the following test period |
来源
|
中国腐蚀与防护学报
,2003,23(4):206-210 【核心库】
|
关键词
|
空蚀
;
腐蚀因素
;
20SiMn低合金钢
;
3%NaCl溶液
;
电化学
|
地址
|
中国科学院金属研究所, 金属腐蚀与防护国家重点实验室, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-4537 |
学科
|
金属学与金属工艺 |
基金
|
国家973计划
|
文献收藏号
|
CSCD:1310743
|
参考文献 共
14
共1页
|
1.
Wu Peihao.
Chinese Abrasion and Cavitation in Hydrauli Machinery,2001:111
|
CSCD被引
1
次
|
|
|
|
2.
Liu Wei.
J.Chin.Soc.Corros.Prote,2001,21(3):286
|
CSCD被引
1
次
|
|
|
|
3.
Karimi A.
Internatiolnal Metals Reviews,1986,31(1):1
|
CSCD被引
1
次
|
|
|
|
4.
Engelberg G.
Corros.Sci,1992,48(3):206
|
CSCD被引
2
次
|
|
|
|
5.
Kwok C T.
Mater.Sci.Eng.A,2000,290:145
|
CSCD被引
26
次
|
|
|
|
6.
Ogino K.
Corriosio,1988,44(2):97
|
CSCD被引
1
次
|
|
|
|
7.
Al-Hahem A.
Corrosion,1997,53(2):103
|
CSCD被引
1
次
|
|
|
|
8.
Tomlinson W J.
Tribology International,1988,21(1):21
|
CSCD被引
3
次
|
|
|
|
9.
Kwok C T.
Wear,1997,211:84
|
CSCD被引
23
次
|
|
|
|
10.
Chang S C.
Wear,1995,181/183:511
|
CSCD被引
14
次
|
|
|
|
11.
Zhao Kang.
Wear,1993,162/164:811
|
CSCD被引
16
次
|
|
|
|
12.
Lou Suzhen.
Corrosion,59:7
|
CSCD被引
1
次
|
|
|
|
13.
Zhang Yi.
Wear,2000,240:231
|
CSCD被引
3
次
|
|
|
|
14.
Hoffmann M R.
Ultrasonics Sonohemistry,1996,3(3):S163
|
CSCD被引
1
次
|
|
|
|
|