帮助 关于我们

返回检索结果

航空装备电弧熔丝增材制造技术发展及路线规划图
Wire arc additive manufacturing technology development and route planning map for aviation equipment

查看参考文献53篇

文摘 电弧熔丝增材制造技术(wire arc additive manufacturing,WAAM)是一种高沉积效率的增材制造技术,采用逐层堆积的方式制备多种高性能的金属结构件,针对航空装备的大型、中等复杂的铝合金、钛合金WAAM成形技术的研究获得广泛关注。本文对WAAM技术定义、技术分类、成形系统及原理进行论述,综述了近年来国内外航空航天领域WAAM成形铝合金、钛合金的组织特性、冶金缺陷及质量改善、典型构件技术应用等方面的研究进展,分析了目前航空装备的大型、中等复杂构件WAAM成形技术所面临的关键共性问题,并提出了2035年WAAM成形技术路线规划图。
其他语种文摘 Wire arc additive manufacturing (WAAM) is an additive manufacturing technology with high deposition rate that produces a variety of high-performance metal structures layer by layer stacking. The research on WAAM technology of large and medium complex aluminum alloy and titanium alloy for aviation equipments has been widely concerned. In this paper, the WAAM technical definition, classification, forming system and principle are discussed. The recent research progress in the microstructure properties, metallurgical defects, quality improvement and technical application of typical components of aluminum alloy and titanium alloy formed by WAAM in aerospace field both at home and abroad is reviewed. The key common problems in the WAAM forming large and medium complex components of aviation equipments are analyzed, and the 2035 WAAM forming technology route planning map is proposed. In 2035, the "shape control" and "property control" technology of WAAM aluminum alloy and titanium alloy component is to be mastered; the large and medium complex structure components of aluminum alloy and titanium alloy which formed by WAAM are achieved comprehensive application in aviation equipment.
来源 航空材料学报 ,2023,43(1):18-27 【核心库】
DOI 10.11868/j.issn.1005-5053.2022.000207
关键词 电弧熔丝增材制造 ; 航空装备 ; 铝合金 ; 钛合金 ; 发展路线图
地址

中国航发北京航空材料研究院3D打印研究与工程技术中心, 北京, 100095

语种 中文
文献类型 研究性论文
ISSN 1005-5053
学科 金属学与金属工艺
文献收藏号 CSCD:7441002

参考文献 共 53 共3页

1.  顾冬冬. 航空航天高性能金属材料构件激光增材制造. 中国激光,2020,47(5):32-55 被引 41    
2.  Zhou T. Microstructure control during deposition and post-treatment to optimize mechanical properties of wire-arc additively manufactured 17-4 PH stainless steel. Additive Manufacturing,2022,58:103047 被引 1    
3.  刘伟. 复杂结构与高性能材料增材制造技术进展. 机械工程学报,2019,55(20):128-151 被引 42    
4.  Chakraborty D. The state of the art for wire arc additive manufacturing process of titanium alloys for aerospace applications. Journal of Materials Engineering and Performance,2022,31:6149-6182 被引 1    
5.  任慧娇. 增材制造技术在航空航天金属构件领域的发展及应用. 航空制造技术,2020,63(10):72-77 被引 6    
6.  Honnige J R. Control of residual stress and distortion in aluminum wire+ arc additive manufacture with rolling. Additive Manufacturing,2018,22:775-783 被引 8    
7.  Ding D H. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. The International Journal of Advanced Manufacturing Technology,2015,81(1):465-481 被引 31    
8.  Tan C L. Progress and perspectives in laser additive manufacturing of key aeroengine materials. International Journal of Machine Tools and Manufacture,2021,170:103804 被引 11    
9.  Aboulkhair N T. 3D printing of aluminum alloys: additive manufacturing of aluminum alloys using selective laser melting. Progress in Materials Science,2019,106:100578 被引 63    
10.  Wang J D. Effect of TiC particle size on the microstructure and tensile properties of TiCp/Ti6Al4V composites fabricated by laser melting deposition. Optics & Laser Technology,2018,105:195-206 被引 7    
11.  Zhang L C. Additive manufacturing of titanium alloys by electron beam melting: a review. Advanced Engineering Materials,2018,20(5):1700842 被引 22    
12.  Zhang G D. Wire-fed electron beam directed energy deposition of Ti-6Al-2Zr-1Mo-1V alloy and the effect of annealing on the microstructure, texture, and anisotropy of tensile properties. Additive Manufacturing,2022,49:102511 被引 3    
13.  Singh S R. Wire arc additive manufacturing (WAAM): a new process to shape engineering materials. Materials Today:Proceedings,2021,44:118-128 被引 2    
14.  李权. 航空航天轻质金属材料电弧熔丝增材制造技术. 航空制造技术,2018,61(3):74-82 被引 36    
15.  Ralph B. Method of making decorative articles: US1, 533,300,1925 被引 1    
16.  Rodrigues T A. Current status and perspectives on wire and arc additive manufacturing (WAAM). Materials,2019,12(7):1121 被引 13    
17.  Li J Z. Review of wire arc additive manufacturing for 3D metal printing. International Journal of Automation Technology,2019,13(3):346-353 被引 4    
18.  Ibrahim I A. The effect of Gas Metal Arc Welding (GMAW) processes on different welding parameters. Procedia Engineering,2012,41:1502-1506 被引 1    
19.  Wang X. Process stability for GTAW-based additive manufacturing. Rapid Prototyping Journal,2019,25(5):809-819 被引 1    
20.  Bai X W. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. International Journal of Heat and Mass Transfer,2018,124:504-516 被引 9    
引证文献 1

1 於之杰 航空增材制造技术中的跨尺度力学研究进展 航空材料学报,2023,43(5):1-9
被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号