帮助 关于我们

返回检索结果

西南喀斯特地区典型矿渣中砷、锑的赋存形态及其潜在风险评价
The speciation and potential risk assessment of arsenic and antimony in typical mine tailings of Karst area,Southwest China

查看参考文献60篇

吴敏 1   吴攀 1,2   李玲 3   杨利玉 1   廖路 1   李松鹏 1  
文摘 针对西南喀斯特地区典型矿渣中砷、锑的赋存形态及其潜在风险的问题,采用Shiowatana连续提取法提取矿渣中的砷(As)、锑(Sb),分析并揭示As、Sb的赋存特征;结合矿渣的基本理化性质和矿物组成特征,讨论矿渣堆中As、Sb的活动性及其关键影响因素;采用风险评价编码法(RAC)对矿渣中As、Sb的潜在生态风险进行相关评价.结果表明:矿渣中的As主要以铁铝结合态和残渣态的形式赋存;Sb主要以残渣态的形式赋存.As比Sb具有更高比例的铁铝结合态,而Sb比As具有更高比例的碳酸盐结合态.弱酸至近中性矿渣中,Sb的活动性强于As;酸性矿渣中,As的活动性强于Sb.矿渣中As、Sb的潜在风险以中-低风险为主,个别为高和极高风险.
其他语种文摘 Shiowatana sequential extraction method was used to extract arsenic(As)and antimony(Sb)from mine tailings aiming at the chemical speciation and potential risks of As and Sb in typical tailings in karst area of Southwest China,and the speciation characteristics of As and Sb were analyzed and revealed. This study discussed the availability and key influencing factors of As and Sb in mine tailings,based on the physical,chemical properties and mineralogical characteristics of tailings. The ecological risk of As and Sb was evaluated by risk assessment coding method(RAC). The results showed that As mainly associated with Fe- and Al- bound and residue fraction;Sb mainly associated with residue speciation. Comparatively,the amount of As extracted in Fe- and Al- bound fraction was more than that of Sb,and the amount of Sb extracted in carbonate-bound fraction was higher than that of As. In the weakly acidic to neutral tailings environment,the mobility of Sb was greater than that of As;In the acidic environment,the mobility of As was stronger than that of Sb. In general,the potential risks of As and Sb in mine tailings were mainly medium to low risks,except for individual high and extremely high risks.
来源 环境科学学报 ,2022,42(10):420-429 【核心库】
DOI 10.13671/j.hjkxxb.2022.0042
关键词 As ; Sb ; 喀斯特地区 ; 矿渣 ; 赋存形态 ; 潜在风险评价
地址

1. 贵州大学资源与环境工程学院, 贵阳, 550025  

2. 喀斯特地质资源与环境教育部重点实验室, 喀斯特地质资源与环境教育部重点实验室, 贵阳, 550025  

3. 中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081

语种 中文
文献类型 研究性论文
ISSN 0253-2468
学科 环境质量评价与环境监测
基金 国家重点研发计划项目 ;  贵州省项目 ;  国家自然科学基金委员会-贵州省人民政府喀斯特科学中心项目
文献收藏号 CSCD:7339111

参考文献 共 60 共3页

1.  Abdul Nishad P. Antimony,a pollutant of emerging concern:A review on industrial sources and remediation technologies. Chemosphere,2021:130252 被引 1    
2.  Alvarez-Ayuso E. Mobility and phytoavailability of antimony in an area impacted by a former stibnite mine exploitation. Science of the Total Environment,2013,449(1):260-268 被引 1    
3.  Ashley P M. Environmental mobility of antimony around mesothermal stibnite deposits,New South Wales, Australia and southern New Zealand. Journal of Geochemical Exploration,2003,77(1):1-14 被引 17    
4.  Belzile N. Human exposure to antimony:I. Sources and intake. Critical Reviews in Environmental Science & Technology,2011,41(14):1309-1373 被引 4    
5.  Briki M. Distribution and health risk assessment to heavy metals near smelting and mining areas of Hezhang,China. Environ Monit Assess,2017,189(9):458 被引 3    
6.  Callahan M A. Water-related environmental fate of 129 priority pollutants,1979 被引 6    
7.  Cantor K P. Arsenic,internal cancers,and issues in inference from studies of low-level exposures in human populations. Toxicology and Applied Pharmacology,2007,222(3):252-257 被引 5    
8.  Casiot C. Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago(upper Orb basin,France). Applied Geochemistry,2007,22(4):788-798 被引 20    
9.  Chang A C. Developing human health-related chemical guidelines for reclaimed wastewater and sewage sludge applications in agriculture. Uso De Aguas Residuais,2001 被引 1    
10.  Communities C O. Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community,1976 被引 1    
11.  Dousova B. Effect of organic matter on arsenic(V)and antimony(V)adsorption in soils. European Journal of Soil Science,2015,66(1):74-82 被引 5    
12.  Du X. Comparison of different sequential extraction procedures to identify and estimate bioavailability of arsenic fractions in soil. Journal of Soils and Sediments,2020,20(10):3656-3668 被引 1    
13.  Dupont D. Antimony recovery from end-of-life products and industrial process residues:A critical review. Journal of Sustainable Metallurgy,2016,2(1):79-103 被引 5    
14.  Fawcett S E. Arsenic and antimony geochemistry of mine wastes,associated waters and sediments at the Giant Mine,Yellowknife,Northwest Territories,Canada. Applied Geochemistry,2015,62:3-17 被引 4    
15.  Filella M. Antimony in the environment:A review focused on natural waters:I. Occurrence. Earth-Science Reviews,2002,57(1):125-176 被引 100    
16.  Filella M. Antimony in the environment:A review focused on natural waters. III. Microbiota relevant interactions. Earth-Science Reviews,2007,80(3):195-217 被引 28    
17.  Filella M. Antimony in the environment:knowns and unknowns. Environmental Chemistry,2009,6(2):95 被引 11    
18.  Filgueiras A V. Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring,2002,4(6):823-857 被引 45    
19.  Gleyzes C. Fractionation studies of trace elements in contaminated soils and sediments:a review of sequential extraction procedures. TrAC Trends in Analytical Chemistry,2002,21(6/7):451-467 被引 73    
20.  Guo X. Antimony smelting process generating solid wastes and dust:Characterization and leaching behaviors. Journal of Environmental Sciences,2014,26(7):1549-1556 被引 6    
引证文献 1

1 陈佳 土壤侵蚀对重金属迁移的作用规律与机制研究进展 水土保持研究,2024,31(1):460-470
被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号