帮助 关于我们

返回检索结果

航空铝合金原位腐蚀疲劳性能及断裂机理
In-situcorrosion fatigue performance and fracture mechanism of aviation aluminum alloy

查看参考文献23篇

王付胜 1   孔繁淇 1   王文平 2   陈亚军 1 *  
文摘 为了研究不同腐蚀条件下2024铝合金的疲劳性能,首先设计搭建原位腐蚀疲劳平台,然后分别进行无腐蚀疲劳、预腐蚀疲劳和原位腐蚀疲劳实验,分析不同腐蚀疲劳条件下2024铝合金的疲劳断裂行为,最后利用扫描电镜(SEM)表征宏、微观断口特征,探究失效机理。结果表明:相同腐蚀环境和时间下,预腐蚀和原位腐蚀疲劳寿命分别为无腐蚀疲劳寿命的92%和42%;在原位腐蚀疲劳条件下,滑移带挤入、挤出导致表面粗糙度增加,吸附较多腐蚀介质,加剧蚀坑演化,易于裂纹萌生并形成多个裂纹源。裂纹的连通形成更大尺寸的损伤,并在材料内部快速扩展。预腐蚀和原位腐蚀疲劳试件断口观察到大量脆性疲劳条带,并且原位腐蚀疲劳条带平均间距约为无腐蚀疲劳条带间距的2倍,说明原位腐蚀疲劳条件下裂纹扩展速率更快。
其他语种文摘 In order to study the fatigue properties of 2024 aluminum alloy under different corrosion fatigue conditions,First,an in-situcorrosion fatigue platform was established,and then non-corrosion fatigue test,pre-corrosion fatigue test and in-situ corrosion fatigue test were used to comparatively study the fatigue life and fracture mechanism of 2024 aluminum alloy.Scanning electron microscopy (SEM)was used to characterize the macro and micro fracture characteristics and explore the failure mechanism.The results show that the samples with the same corrosion environment and corrosion time,the fatigue life in in-situcorrosion fatigue test and in pre-corrosion fatigue test is 92%and 42% of corrosion fatigue life,respectively.Under the condition of in-situ corrosion fatigue,the squeeze and the extrusion of slip zone leads to the increase of surface roughness,which adsorbs more corrosive medium,exacerbates pit evolution,accelerates the initiation of crack and forms multiple crack sources.The connection of cracks forms a larger size of damage,and rapidly expands inside the material.A lot of brittle fringes are observed in the fracture of the pre-corrosion and in-situcorrosion fatigue test specimens,and the average distance between the fringes under in-situ corrosion fatigue is about two times larger than that under non-corrosion fatigue,indicating the crack propagation rate is faster under the in-situ corrosion fatigue condition.
来源 材料工程 ,2022,50(6):149-156 【核心库】
DOI 10.11868/j.issn.1001-4381.2021.000466
关键词 航空铝合金 ; 原位腐蚀疲劳 ; 疲劳寿命 ; 断裂机理
地址

1. 中国民航大学中欧航空工程师学院, 天津  

2. 北京经纬恒润科技股份有限公司, 北京

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 航空
基金 中央高校基本科研业务费
文献收藏号 CSCD:7261516

参考文献 共 23 共2页

1.  Tolga D. Recent developments in advanced aircraft aluminium alloys. Materials and Design,2014,56:862-871 被引 317    
2.  秦剑波. 腐蚀环境下2024-T3铝合金疲劳裂纹扩展和剩余强度实验研究. 材料工程,2006(3):14-17 被引 10    
3.  Cui Z Y. Atmospheric corrosion behavior of 2A12aluminum alloy in a tropical marine environment. Advances in Materials Science and Engineering,2016,26(6):1721-1728 被引 1    
4.  Cao F H. Electrochemical noise analysis of LY12-T3in exco solution by discrete wavelet transform technique. Electrochimica Acta,2006,51(7):1359-1364 被引 17    
5.  Wang Z Y. Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process. Transactions of Nonferrous Metals Society of China,2007,17(2):326-334 被引 16    
6.  Sun S Q. Effects of aging treatment and peripheral coarse grain on the exfoliation corrosion behaviour of 2024aluminium alloy using SR-CT. Journal of Materials Research and Technology,2020,9(3):3219-3229 被引 1    
7.  马少华. 腐蚀环境对预腐蚀铝合金腐蚀疲劳性能的影响. 材料工程,2015,43(2):91-95 被引 10    
8.  周松. 孔边倒角和预腐蚀作用下航空铝合金疲劳性能及断裂机理研究. 材料工程,2016,44(6):98-103 被引 2    
9.  Adjel S. Effect of corrosion pit density on the fatigue life of aluminum 1050A. The International Journal of Advanced Manufacturing Technology,2018,97(5/8):3163-3177 被引 2    
10.  Zhang S. Effect of coastal atmospheric corrosion on fatigue properties of 2024-T4aluminum alloy structures. Journal of Alloys and Compounds,2019,802:511-521 被引 4    
11.  Frederic M. Synergistic action of fatigue and corrosion during crack growth in the 2024aluminum alloy. Procedia Engineering,2010,2(1):1441-1450 被引 1    
12.  Shen L. Stress corrosion cracking and corrosion fatigue cracking behavior of A7 N01P-T4aluminum alloy. Materials and Corrosion,2018,69(2):43-59 被引 1    
13.  Yang H H. Synergistic effect of environmental media and stress on the fatigue fracture behaviour of aluminium alloys. Fatigue and Fracture of Engineering Materials and Structures,2016,39:1309-1316 被引 2    
14.  刘乐乐. 不同应力水平下5A06铝合金的疲劳断口研究. 宇航材料工艺,2015(5):70-74 被引 3    
15.  Chemin A. Corrosion fatigue crack growth of 7475-T7351aluminum alloy under flight simulation loading. Procedia Engineering,2015,101:85-92 被引 5    
16.  那顺桑. 金属材料力学性能,2011 被引 7    
17.  李旭东. 飞机结构材料环境腐蚀与疲劳分析,2014 被引 1    
18.  Chen Y Q. Effects of service environment and pre-deformation on the fatigue behaviour of 2524 aluminium alloy. Archives of Civil and Mechanical Engineering,2020,20(1):1-16 被引 1    
19.  李旭东. LY12CZ航空铝合金腐蚀疲劳断口研究. 装备环境工程,2013(4):9-12 被引 5    
20.  王娟. 2A14合金疲劳行为研究,2013 被引 2    
引证文献 3

1 郭伟 激光-仅线圈式EMAT的金属检测系统优化设计 电子测量与仪器学报,2023,37(6):101-113
被引 0 次

2 胡俊 喷丸弹坑应力场演变的相似性实验与仿真模拟 材料热处理学报,2023,44(11):62-70
被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号