帮助 关于我们

返回检索结果

地下水系统砷-铁耦合行为的反应性溶质运移模拟
Reactive Transport Modeling of the Coupled Fate of Arsenic and Iron in Groundwater Systems

查看参考文献57篇

孙静 1   刘意章 1   李超 1,2   刘承帅 1,3  
文摘 定量厘清砷在铁矿物相转变影响下的释放迁移规律,对破译高砷地下水成因机制至关重要。然而,地下水系统中水文-生物地球化学多过程交互作用极其复杂,因此定量化研究难度大。反应性溶质运移模拟作为一种耦合了生物地球化学过程和水文地质过程的数值模拟方法,可有效解译复杂多过程系统,从而实现观测数据的定量解析。本文介绍了反应性溶质运移模型的主要特点;阐述了影响地下水系统中砷行为的两类关键地球化学过程(铁矿物的氧化/还原过程、砷在矿物表面的吸附/解吸过程)的模拟方法;结合近年来的典型研究案例,分析了模型如何用于识别和量化不同水文-生物地球化学过程对高砷地下水形成和衰减的控制作用;并进一步剖析了当前研究中仍需完善的问题。
其他语种文摘 A quantitative analysis of how arsenic release and migration occur during iron mineral transformation is essential for deciphering the formation mechanism of arsenic rich groundwater.Nevertheless,groundwater systems are often affected by complex interactions between flow,solute transport and biogeochemical processes,and therefore process-based quantification is challenging.As a numerical modeling method that couples biogeochemical and hydrogeological processes,reactive transport modeling can distill complex systems into their salient components and achieve an in-depth,quantitative analysis of the observation data.In this context,this paper has reviewed the key characteristics of reactive transport models,illustrated how to simulate the two most important geochemical processes that regulate the behavior of arsenic (i.e.,the reduction-oxidation of iron minerals and the adsorption-desorption of arsenic on mineral surfaces),showed how such models can aid in identifying and quantifying hydro-biogeochemical controls over groundwater arsenic dynamics using recent research cases,and pointed out several aspects that should be further undertaken and improved.
来源 矿物岩石地球化学通报 ,2022,41(1):81-91 【核心库】
DOI 10.19658/j.issn.1007-2802.2021.40.103
关键词 地下水 ; ; 铁矿物 ; 反应性溶质运移模型
地址

1. 中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081  

2. 中国科学院大学, 北京, 100049  

3. 广东省科学院生态环境与土壤研究所, 广东省农业环境综合治理重点实验室, 广州, 510650

语种 中文
文献类型 研究性论文
ISSN 1007-2802
学科 地质学
基金 国家重点研发计划课题
文献收藏号 CSCD:7151935

参考文献 共 57 共3页

1.  Appelo C. Geochemistry, groundwater and pollution. 2nd ed,2005 被引 1    
2.  Coker V S. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. Environmental Science & Technology,2006,40(24):7745-7750 被引 4    
3.  Davis J A. Surface complexation modeling in aqueous geochemistry. Reviews in Mineralogy and Geochemistry,1990,23(1):177-260 被引 7    
4.  Davis J A. Application of the surface complexation concept to complex mineral assemblages. Environmental Science & Technology,1998,32(19):2820-2828 被引 13    
5.  De Windt L. Reactive transport modeling: A key performance assessment tool for the geologic disposal of nuclear waste. Elements,2019,15(2):99-102 被引 1    
6.  Dixit S. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology,2003,37(18):4182-4189 被引 119    
7.  Doherty J. Calibration and uncertainty analysis for complex environmental models. Watermark Numerical Computing,2015 被引 4    
8.  Dzombak D A. Surface complexation modeling: Hydrous ferric oxide,1990 被引 17    
9.  Eckert P. Hydrogeochemical modeling of enhanced benzene, toluene, ethylbenzene, xylene (BTEX) remediation with nitrate. Water Resources Research,2002,38(8):1130 被引 1    
10.  Fendorf S. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science,2010,328(5982):1123-1127 被引 93    
11.  Goldberg S Jr. Modeling adsorption of metals and metalloids by soil components. Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments,2008:215-264 被引 1    
12.  Guo H M. A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes. Applied Geochemistry,2014,41:196-217 被引 25    
13.  Jeppu G P. A modified batch reactor system to study equilibrium-reactive transport problems. Journal of Contaminant Hydrology,2012,129/130:2-9 被引 3    
14.  Jia Y F. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review. Science of the Total Environment,2018,643:967-993 被引 18    
15.  Klump S. Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. Environmental Science & Technology,2006,40(1):243-250 被引 11    
16.  Kocar B D. Deciphering and predicting spatial and temporal concentrations of arsenic within the Mekong Delta aquifer. Environmental Chemistry,2014,11(5):579-594 被引 1    
17.  Lichtner P C. Continuum formulation of multicomponent-multiphase reactive transport. Reviews in Mineralogy and Geochemistry,1996,34(1):1-81 被引 1    
18.  Maher K. Tracking diverse minerals, hungry organisms, and dangerous contaminants using reactive transport models. Elements,2019,15(2):81-86 被引 1    
19.  Mai N T H. Adsorption and desorption of arsenic to aquifer sediment on the Red River floodplain at Nam Du, Vietnam. Geochimica et Cosmochimica Acta,2014,142:587-600 被引 5    
20.  McArthur J M. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: The example of West Bengal and its worldwide implications. Applied Geochemistry,2004,19(8):1255-1293 被引 29    
引证文献 2

1 闫雅妮 河套平原西部地下水砷富集机制研究 矿物岩石地球化学通报,2023,42(2):289-297
被引 0 次

2 罗欢 矿山污染水库中砷形态转化受铁循环影响研究 环境科学与技术,2023,46(3):125-131
被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号