帮助 关于我们

返回检索结果

石墨烯基气凝胶微球的研究进展
Research progress in graphene-based aerogel microspheres

查看参考文献78篇

文摘 近年来,石墨烯基气凝胶(GAs)因其低密度、高比表面积及多孔结构等优异特性被广泛研究并在诸多应用领域内表现出极大的潜力。但是传统块状石墨烯基气凝胶往往具有设备依赖性强、材料尺寸大及量化生产性差等缺点,并且忽略了特定应用场景对材料形状尺寸的要求,从而限制了其实际应用与发展。石墨烯基气凝胶微球(GAMs)作为一种具有新颖结构的新型材料,不仅具有GAs的各种优势特征,而且具有灵活可控的尺寸及可量化生产能力等优点,大大丰富了GAMs的应用场景。本文将对GAMs的制备方法及其结构特征,以及在水污染处理、电磁波吸收、电催化等领域研究现状进行详细阐述,指出微球成形组装过程中的内在机制。
其他语种文摘 In recent years,graphene-based aerogels(GAs)have been extensively studied owing to the excellent characteristics of low density,high specific surface area and porous structure,which show great potential in many applications.The disadvantages of traditional bulk graphene-based aerogels, for instance,strong device-dependence,large size and poor scalable production,limit their practical application and development.Meanwhile,conventional preparation techniques ignore the requirements of materials shape and size for specific application scenarios.As a new aerogels display form with novel structure,graphene-based aerogel microspheres(GAMs)not only have various advantages of GAs but possess properties of flexible and controllable size and scalable production,which tremendously enrich the application scenarios of GAMs.The fabrication methods and structure of GAMs,as well as the application fields of water pollution treatment,electromagnetic wave absorption and electrocatalysis were elaborated in this review.Meanwhile,the internal mechanism of GAS during molding assembly process was also pointed out.
来源 材料工程 ,2021,49(11):14-29 【核心库】
DOI 10.11868/j.issn.1001-4381.2021.000030
关键词 石墨烯基气凝胶 ; 微球 ; 多孔结构 ; 可控制备 ; 静电喷雾
地址

西南交通大学材料科学与工程学院, 材料先进技术教育部重点实验室, 成都, 610000

语种 中文
文献类型 综述型
ISSN 1001-4381
学科 一般工业技术
基金 国家自然科学基金 ;  四川省科技计划项目 ;  中央引导地方科技发展资金自由探索基础研究项目
文献收藏号 CSCD:7090755

参考文献 共 78 共4页

1.  Shehzad K. Three-dimensional macrostructures of two-dimensional nanomaterials. Chemical Society Reviews,2016,45(20):5541-5588 被引 24    
2.  Li Z. Superstructured assembly of nanocarbons: fullerenes,nanotubes and graphene. Chemical Reviews,2015,115(15):7046-7117 被引 31    
3.  Kyu H K. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nature Nanotechnology,2012,7(9):562-566 被引 23    
4.  Wei X. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents. Journal of Hazardous Materials,2017,335(5):28-38 被引 12    
5.  Nardecchia S. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene:synthesis and applications. Chemical Society Reviews,2013,42(2):794-830 被引 96    
6.  Huang H. Controllable codoping of nitrogen and sulfur in graphene for highly efficient Li-oxygen batteries and direct methanol fuel cells. Chemistry of Materials,2016,28(6):1737-1745 被引 10    
7.  Bai S. Graphene-inorganic nanocomposites. RSC Advances,2012,2(1):64-98 被引 22    
8.  Zhang L Y. Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3Dgraphene as an efficient electrocatalyst toward formic acid oxidation. Nanoscale,2016,8(4):1905-1909 被引 3    
9.  Wu Y P. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nature Communications,2015,6(1):6141 被引 7    
10.  Xu X. Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio. Advanced Materials,2016,28(41):9223-9230 被引 19    
11.  Hu H. Ultralight and highly compressible graphene aerogels. Advanced Materials,2013,25(15):2219-2223 被引 106    
12.  Jiang Y. Versatile graphene oxide puttylike material. Advanced Materials,2016,28(46):10287 被引 9    
13.  Fang Q. Self-assembly of graphene oxide aerogels by layered double hydroxides cross-linking and their application in water purification. Journal of Materials Chemistry A,2014,2(23):8941-8951 被引 7    
14.  Cheng Z. One-step fabrication of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis. ACS Sustainable Chemistry & Engineering,2015,3(7):1677-1685 被引 7    
15.  Chen L. High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohydrate Polymers,2017,155(2):345-353 被引 10    
16.  Chen Z. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Advanced Materials,2013,25(9):1296-1300 被引 69    
17.  Chen H H. Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon,2017,124:506-514 被引 12    
18.  Meng F B. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Research,2018,11(5):2847-2861 被引 8    
19.  Zhao Y. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Advanced Materials,2015,27(12):2049-2053 被引 1    
20.  Zhang Y. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon,2016,105:438-447 被引 36    
引证文献 2

1 魏梦呈 石墨烯基气凝胶的制备及应用进展 化工新型材料,2023,51(4):32-38
被引 0 次

2 田浩 烟幕遮蔽雷达型精确制导武器的作战效果研究 航空兵器,2023,30(6):75-80
被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号