帮助 关于我们

返回检索结果

基于组合神经网络的雷诺平均湍流模型多次修正方法
A COMBINED NEURAL NETWORK AND MULTIPLE MODIFICATION STRATEGY FOR REYNOLDS-AVERAGED NAVIER-STOKES TURBULENCE MODELING

查看参考文献50篇

张珍 1,2   叶舒然 1,2   岳杰顺 1,2   王一伟 1,2   黄晨光 1,2,3  
文摘 求解雷诺平均(Reynolds-averaged Navier-Stokes, RANS)方程依然是工程应用中有效且实用的方法,但对雷诺应力建模的不确定性会导致该方法的预测精度具有很大差异.随着人工智能的发展,湍流闭合模型结合机器学习元素的数据驱动方法被认为是提高RANS模型预测性能的有效手段,然而这种数据驱动方法的稳定性和预测精度仍有待进一步提高.本文通过构建一个全连接神经网络对RANS方程中的涡黏系数进行预测以实现雷诺应力的隐式求解,该神经网络记作涡黏系数神经网络(eddy viscosity neural network, EVNN).此外,也使用张量基神经网络(tensor basis neural network, TBNN)预测未封闭量与解析量之间的高阶涡黏关系,并利用基张量保证伽利略不变性.最后,采用多次修正的策略实现修正模型对流场预测的精度闭环.上述方法使用大涡模拟(large eddy simulation, LES)方法产生的高保真数据,以及RANS模拟获得的基线数据对由EVNN和TBNN组合的神经网络进行训练,然后用训练好的模型预测新的RANS模拟的流场.通过与高保真LES结果进行对比,结果表明,相比于原始RANS模型,修正模型对后验速度场、下壁面平均压力系数和摩擦力系数的预测精度均有较大提升.可以发现对雷诺应力线性部分的隐式处理可以增强数值求解的稳定性,对雷诺应力非线性部分的修正可以提升模型对流场各向异性特征预测的性能,并且多次修正后的模型表现出更高的预测精度.因此,该算法在数据驱动湍流建模和工程应用中具有很大的应用潜力.
其他语种文摘 Solving the Reynolds-averaged Navier-Stokes (RANS) equation remains an effective and practical approach in engineering applications, but the uncertainty of Reynolds stress modeling will lead to discrepancies in the prediction accuracy of this approach. With the development of artificial intelligence, the data-driven method of turbulence model combined with machine learning algorithm is more effective than the original RANS model, however, the stability and prediction accuracy of the data-driven method could still be further improved. In the present paper, a fully connected neural network is constructed to predict the eddy viscosity, and this neural network is called as Eddy Viscosity Neural Network (EVNN). Additionally, a tensor-based neural network (TBNN) is also applied to predict the higher-order eddy viscosity relationship between the unclosed quantity and the analytical quantity, and the basis tensors are used to ensure the Galilean invariance. Finally, the closed-loop accuracy of the predicted flow field is realized through multiple modifications. For the method above, the neural network which is combined by EVNN and TBNN, is trained by using the high-fidelity data generated by the large eddy simulation (LES) and the baseline data obtained by the RANS simulation. Compared with the high-fidelity LES results, the results of the modified model exhibit significantly higher accuracy in the posterior velocity field, the mean pressure coefficient, and the mean friction coefficient than the original RANS model. It can be found that the implicit treatment of the linear part of the Reynolds stress can enhance the numerical stability, and the modification of the nonlinear part of the Reynolds stress can better predict the anisotropic characteristics of the flow field. Furthermore, the prediction accuracy is further improved through the multiple modification strategy. Therefore, the combined neural network and multiple modification strategy developed in this paper, have strong potentials in data-driven turbulence modeling and engineering applications in the future.
来源 力学学报 ,2021,53(6):1532-1542 【核心库】
DOI 10.6052/0459-1879-21-073
关键词 组合神经网络 ; 雷诺平均 ; 各向异性 ; 隐式修正 ; 精度闭环
地址

1. 中国科学院力学研究所, 中国科学院流固耦合系统力学重点实验室, 北京, 100190  

2. 中国科学院大学工程科学学院, 北京, 100049  

3. 中国科学院合肥物质科学研究院, 合肥, 230031

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 力学
基金 国家自然科学基金
文献收藏号 CSCD:7055946

参考文献 共 50 共3页

1.  Durbin P A. Some recent developments in turbulence closure modeling. Annual Review of Fluid Mechanics,2018,50:77-103 被引 19    
2.  Launder B E. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer,1974,1(2):131-137 被引 65    
3.  强光林. 基于车身绕流的低雷诺数湍流模型改进研究. 力学学报,2020,52(5):1371-1382 被引 3    
4.  Spalart P R. A one-equation turbulence model for aerodynamic flows. 30th AIAA Aerospace Sciences Meeting & Exhibit,1992:429 被引 1    
5.  Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal,1994,32(8):1598-1605 被引 1279    
6.  Hamlington P E. Reynolds stress closure for nonequilibrium effects in turbulent flows. Physics of Fluids,2008,20(11):107-300 被引 1    
7.  Gatski T B. On explicit algebraic stress models for complex turbulent flows. Journal of Fluid Mechanics,1993,254:59-78 被引 29    
8.  Abbasi S. Application of recurrence CFD (rCFD) to species transport in turbulent vortex shedding. Computers & Fluids,2020,196:104348 被引 2    
9.  王巍. 主动射流控制水翼空化的数值模拟与分析. 力学学报,2019,51(6):1752-1760 被引 8    
10.  Vahajia S. Numerical investigation on the bubble size distribution around NACA0015 hydrofoil. Ocean Engineering,2019,172:59-71 被引 1    
11.  张佳悦. 航行体回收垂直入水空泡流场及水动力特性研究. 力学学报,2019,51(3):803-812 被引 15    
12.  Beetham S. Biomass pyrolysis in fully-developed turbulent riser flow. Renewable Energy,2019,140:751-760 被引 1    
13.  Capecelatro J. On fluid-particle dynamics in fully developed cluster-induced turbulence. Journal of Fluid Mechanics,2015,780:578-635 被引 8    
14.  岳杰顺. 水下发射水动力的多尺度预测网络研究. 力学学报,2020,53(2):339-351 被引 1    
15.  Pope S B. A more general effective-viscosity hypothesis. Journal of Fluid Mechanics,1975,72(2):331-340 被引 30    
16.  Craft T J. Development and application of a cubic eddyviscosity model of turbulence. International Journal of Heat and Fluid Flow,1996,17(2):108-115 被引 26    
17.  谢晨月. 基于人工神经网络的湍流大涡模拟方法. 力学学报,2021,53(1):1-16 被引 22    
18.  Brunton S L. Machine learning for fluid mechanics. Annual Review of Fluid Mechanics,2020,52:477-508 被引 63    
19.  Brenner M P. Perspective on machine learning for advancing fluid mechanics. Physical Review Fluids,2019,4(10):100501 被引 3    
20.  Duraisamy K. Turbulence modeling in the age of data. Annual Review of Fluid Mechanics,2019,51:357-377 被引 40    
引证文献 8

1 王年华 基于人工神经网络的非结构网格尺度控制方法 力学学报,2021,53(10):2682-2691
被引 1

2 战庆亮 基于尾流时程目标识别的流场参数选择研究 力学学报,2021,53(10):2692-2702
被引 2

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号