帮助 关于我们

返回检索结果

电解液化学保护锂金属电池负极的研究进展
Research progress in anode protection of lithium metal batteries by electrolyte chemistry

查看参考文献80篇

文摘 锂金属电池被认为是最具潜力的高能量密度储能器件之一,但是锂金属电池负极低库仑效率及不可控的枝晶生长等问题阻碍了其商业化进程。在锂金属电池中,电解液会直接参与固态电解质界面膜(SEI)的形成,对锂金属负极的库仑效率、枝晶生长等产生重要影响。传统LiPF_6基酯类电解液中,锂金属库仑效率低,且锂枝晶现象严重。近年来通过电解液添加剂、溶剂、锂盐以及锂盐浓度等途径调控电解液化学,在锂金属负极保护上取得了显著效果。例如,采用与锂金属负极兼容性更佳的醚类溶剂,可以降低电解液与锂金属的反应性;采用多种添加剂与新型锂盐复配可以有效抑制锂枝晶的形成;采用高浓度锂盐电解液,可以形成稳定SEI膜等。本文综述了锂枝晶的生长原理以及通过溶剂、锂盐、添加剂和高浓度电解液等策略调控电解液化学保护锂金属电池负极的研究现状,总结了各种途径的优势及局限性。并对锂金属电池电解液的发展提出了新的见解,以激发新的策略面对锂金属电池后续的挑战。
其他语种文摘 Lithium metal batteries have been considered as one of the most promising high-energy-density energy storage devices,however,the low Coulombic efficiency and uncontrolled dendrite growth seriously hinder their commercialization.In lithium metal batteries,the electrolytes would directly participate in the formation of solid electrolyte interface(SEI),which play important roles in affecting the lithium metal anode Coulombic efficiency and inhibiting the growth of lithium dendrites.In the traditional LiPF_6 based ester electrolyte,lithium metal anode exhibits low Coulomb efficiency and serious lithium dendrites.In recent years,significant improvement has been achieved for the protection of lithium anode through manipulating the electrolyte additive,solvents,lithium salt and lithium salt concentration,etc.For examples,ether solvent presenting better compatibility with lithium metal was selected to reduce the side reactivity of electrolyte with lithium metal;varieties of additives were adopted to suppress the formation of lithium dendrites;high concentration electrolytes were employed to form stable SEI.In this paper,the growth principles of lithium dendrites,the research status of electrolytes chemistries for protection of lithium metal anode by means of solvents,lithium salts,additives and high concentration electrolytes strategies were reviewed and the advantages and limitations of various approaches were summarized.New insights on the development of electrolytes chemistries were also put forward to stimulate new strategies to face the subsequent challenges of lithium-metal batteries.
来源 材料工程 ,2021,49(7):35-45 【核心库】
DOI 10.11868/j.issn.1001-4381.2020.000265
关键词 锂金属电池 ; 锂金属负极 ; 库仑效率 ; 锂枝晶 ; 电解液化学
地址

西南石油大学新能源与材料学院, 成都, 610500

语种 中文
文献类型 综述型
ISSN 1001-4381
学科 电工技术
基金 成都市国际合作重点研究项目 ;  四川省科技厅重点研发项目
文献收藏号 CSCD:7010945

参考文献 共 80 共4页

1.  Winter M. Before Li ion batteries. Chemical Reviews,2018,118(23):11433-11456 被引 114    
2.  常增花. 锂离子电池硅基负极界面反应的研究进展. 材料工程,2019,47(2):11-25 被引 4    
3.  袁颂东. 锂离子电池高镍三元材料的研究进展. 材料工程,2019,47(10):1-9 被引 7    
4.  Cheng X B. Toward safe lithium metal anode in rechargeable batteries:a review. Chem Rev,2017,117(15):10403-10473 被引 435    
5.  Lin D. Reviving the lithium metal anode for highenergy batteries. Nat Nanotechnol,2017,12(3):194-206 被引 263    
6.  Xiao J. How lithium dendrites form in liquid batteries. Science,2019,366(6464):426-427 被引 36    
7.  Cheng Q. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nat Commun,2018,9(1):2942-2951 被引 13    
8.  程新兵. 金属锂枝晶生长机制及抑制方法. 化学进展,2018,30(1):51-72 被引 15    
9.  Cohen Y S. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. The Journal of Physical Chemistry B,2000,104(51):12282-12291 被引 28    
10.  Steiger J. Microscopic observations of the formation,growth and shrinkage of lithium moss during electrodeposition and dissolution. Electrochimica Acta,2014,136:529-536 被引 17    
11.  Zhao J. Surface fluorination of reactive battery anode materials for enhanced stability. J Am Chem Soc,2017,139(33):11550-11558 被引 29    
12.  Li Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science,2017,358(6362):506-510 被引 61    
13.  Li Y. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule,2018,2(10):2167-2177 被引 17    
14.  Zachman M J. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries. Nature,2018,560(7718):345-349 被引 40    
15.  Fang C. Quantifying inactive lithium in lithium metal batteries. Nature,2019,572(7770):511-515 被引 47    
16.  Wang J. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nature Energy,2019,4(8):664-670 被引 21    
17.  Zheng J. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nature Energy,2017,2(3):17012-17019 被引 51    
18.  Hagos T T. Locally concentrated LiPF_6in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries. ACS Appl Mater Interfaces,2019,11(10):9955-9963 被引 6    
19.  Weber R. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy,2019,4(8):683-689 被引 36    
20.  Wang J. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat Commun,2016,7(1):12032-12041 被引 37    
引证文献 2

1 周亚州 Cu@Cu_2 S 3D集流体诱导锂金属均匀沉积 材料热处理学报,2022,43(7):53-60
被引 0 次

2 高春晖 半限域层次孔炭三维锂负极的构筑及性能 材料工程,2023,51(8):170-180
被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号