帮助 关于我们

返回检索结果

固体塑性实验室时间尺度的分子动力学模拟概述
An overview of molecular dynamics simulations of plasticity in solids at experimentally relevant timescales

查看参考文献66篇

王云江 1,2  
文摘 随着超级计算机软硬件的飞速提升,基于经验势函数的分子动力学模拟在解析固体塑性的微观机制方面发挥着关键作用。但是,由于传统分子动力学基于牛顿运动方程数值积分,积分时间步长通常为飞秒量级,其模拟的时间尺度通常限于纳秒量级,从而为模拟长时间尺度固体塑性机制带来了巨大的挑战。本文从分子动力学模拟的时间尺度限制切入,介绍目前国际流行的几种实验室时间尺度原子模拟技术,并以晶体位错塑性与非晶态物质扩散和剪切转变塑性为例,阐述实验室时间尺度和原子精度计算机模拟的思想与实施步骤。最后,展望了目前加速分子动力学方法普遍存在的问题,并提出可能的解决方案。
其他语种文摘 Molecular dynamics(MD)simulations based on an empirical force field has played a critical role in analysis of the microscopic plastic mechanisms of versatile solids,in light of the great advances in both software and hardware of supercomputers.However,a classical MD is conducted by taking time integration of the Newtonian equation of motion with a very tiny timestep of the order of femtosecond. Therefore,a typical MD simulation of million steps can only explore a timescale window of nanosecond, which brings about a great challenge in long timescale simulations,e.g.,of plastic deformation of solids. This paper will start with a brief introduction of the timescale issue in MD.Then,several state-of-the-art accelerated MD techniques are introduced which are capable of performing atomistic simulations up to experimentally relevant timescales.Several examples including dislocation plasticity in crystalline metals, as well as diffusion and shear transformation in amorphous materials will be computed in detail to demonstrate the basic ideas and procedures of atomic-scale simulations at experimental timescale. Finally,common shortcomings of modern accelerated molecular dynamics techniques,and possible solutions for a final goal of MD simulations spanning the whole timescale domain of plasticity in solid are discussed.
来源 计算力学学报 ,2021,38(3):280-289 【核心库】
DOI 10.7511/jslx20210117002
关键词 分子动力学 ; 加速分子动力学 ; 固体塑性 ; 时间尺度
地址

1. 中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190  

2. 中国科学院大学工程科学学院, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 1007-4708
学科 力学
基金 国家重点研发计划 ;  国家自然科学基金 ;  中国科学院青年创新促进会项目
文献收藏号 CSCD:7007599

参考文献 共 66 共4页

1.  Alder B J. Phase transition for a hard sphere system. The Journal of Chemical Physics,1957,27(5):1208-1209 被引 80    
2.  Alder B J. Studies in molecular dynamics.I.General method. The Journal of Chemical Physics,1959,31(2):459-466 被引 65    
3.  Gibson J B. Dynamics of radiation damage. Physical Review,1960,120(4):1229-1253 被引 6    
4.  Rahman A. Correlations in the motion of atoms in liquid argon. Physical Review,1964,136(2A):A405-A411 被引 34    
5.  Li X. Dislocation nucleation governed softening and maximum strength in nanotwinned metals. Nature,2010,464(7290):877-880 被引 51    
6.  Bulatov V V. Computer Simulations of Dislocations,2006 被引 7    
7.  Wang Y J. Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations. Physical Review B,2013,88(11):115413 被引 2    
8.  Wang Y J. A free energy landscape perspective on the nature of collective diffusion in amorphous solids. Acta Materialia,2018,157:165-173 被引 5    
9.  Ishii A. Adaptive-boost molecular dynamics simulation of carbon diffusion in iron. Physical Review B,2012,85(6):064303 被引 2    
10.  Kabir M. Predicting dislocation climb and creep from explicit atomistic details. Physical Review Letters,2010,105(9):095501 被引 1    
11.  Cao P H. Understanding the mechanisms of amorphous creep through molecular simulation. PNAS,2017,114(52):13631-13636 被引 1    
12.  Kocks U F. Thermodynamics and kinetics of slip. Progress in Material Science,1975,19:141-145 被引 8    
13.  Zhu T. Ultra-strength materials. Progress in Material Science,2010,55(7):710-757 被引 38    
14.  Kushima A. Time scale bridging in atomistic simulation of slow dynamics:Viscous relaxation and defect activation. The European Physical Journal B,2011,82(3/4):271-293 被引 1    
15.  Zhu T. Temperature and strain-rate dependence of surface dislocation nucleation. Physical Review Letters,2008,100(2):025502 被引 38    
16.  Zepeda-Ruiz L A. Atomistic insights into metal hardening. Nature Materials,2021,20(3):315-320 被引 5    
17.  Zepeda-Ruiz L A. Probing the limits of metal plasticity with molecular dynamics simulations. Nature,2017,550(7677):492-495 被引 20    
18.  Debenedetti P G. Second critical point in two realistic models of water. Science,2020,369(6501):289-292 被引 2    
19.  Das J. Work-hardenable ductile bulk metallic glass. Physical Review Letters,2005,94(20):205501 被引 74    
20.  Schroers J. Ductile bulk metallic glass. Physical Review Letters,2004,93(25):255506 被引 72    
引证文献 1

1 庄茁 固体力学跨尺度计算若干问题研究 计算力学学报,2024,41(1):40-46
被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号