帮助 关于我们

返回检索结果

Atmospheric Ducting Effect in Wireless Communications: Challenges and Opportunities

查看参考文献21篇

文摘 Atmospheric ducting has a significant impact on electromagnetic wave propagation. Radio signals that are trapped and guided by the atmospheric duct can travel a much longer distance over the horizon with lower attenuation since the signal power does not spread isotropically through the atmosphere. Atmospheric ducting brings both challenges and opportunities to wireless communications. On one hand, the signals propagating in the atmospheric duct may interfere with a receiver far away as remote co-channel interference. On the other hand, a point-to-point link can be established directly through the atmospheric duct to enable beyond line-of-sight communications. In this article, the formation of the atmospheric duct and its effects on radio wave propagation are first overviewed. Then solutions and standardization activities in the 3rd Generation Partnership Project (3GPP) to mitigate atmospheric duct induced remote interference are presented. Finally, the applications and design challenges of atmospheric duct enabled beyond line-of-sight communications are reviewed and future research directions are suggested.
来源 Journal of Communications and Information Networks ,2021,6(2):101-109 【核心库】
DOI 10.23919/JCIN.2021.9475120
关键词 atmospheric duct ; ducting channel modeling ; beyond line-of-sight ; remote interference management
地址

1. Beijing University of Posts and Telecommunications, Beijing Laboratory of Advanced Information Networks;;Beijing Key Laboratory of Network System Architecture and Convergence, Beijing, 100876  

2. Louisiana State University, USA, Baton Rouge, LA70803  

3. Imperial College London, U.K, London, SW72AZ

语种 英文
文献类型 研究性论文
ISSN 2096-1081
学科 电子技术、通信技术
基金 supported by the Industrial Internet Research Institute (Jinan) of Beijing University of Posts and Telecommunications
文献收藏号 CSCD:6990515

参考文献 共 21 共2页

1.  Dinc E. Beyond-line-of-sight communications with ducting layer. IEEE Communications Magazine,2014,52(10):37-43 被引 6    
2.  . Study on remote interference management for NR. 3GPP TR 38.866,2018 被引 1    
3.  Hitney H V. Tropospheric radio propagation assessment. Proceedings of the IEEE,1985,73(2):265-283 被引 9    
4.  Woods G S. High-capacity, long-range, over ocean microwave link using the evaporation duct. IEEE Journal of Oceanic Engineering,2009,34(3):323-330 被引 14    
5.  Dinc E. Path-loss and correlation analysis for space and polarization diversity in surface ducts. IEEE Transactions on Antennas and Propagation,2016,64(10):4498-4503 被引 5    
6.  Li C. Cognitive tropospheric scatter communication. IEEE Transactions on Vehicular Technology,2018,67(2):1482-1491 被引 1    
7.  You X. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Science China Information Sciences,2021,64:110301:1-110301:74 被引 2    
8.  Bean B R. Radio meteorology,1966 被引 7    
9.  . The radio refractive index: its formula and refractivity data. ITU-R Recommendation P. 453-10,2012 被引 1    
10.  Dinc E. Channel model for the surface ducts: large-scale path-loss, delay spread, and AOA. IEEE Transactions on Antennas and Propagation,2015,63(6):2728-2738 被引 6    
11.  Levy M. Parabolic equation methods for electromagnetic wave propagation,2000 被引 25    
12.  Kuttler J R. Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere. Radio Science,1991,26(2):381-393 被引 48    
13.  Ozgun O. PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain. Computer Physics Communications,2011,182(12):2638-2654 被引 9    
14.  Wang J. Wireless channel models for maritime communications. IEEE Access,2018,6:68070-68088 被引 11    
15.  Xie H. Deep learning enabled semantic communication systems. IEEE Transactions on Signal Processing,2021:2663-2675 被引 9    
16.  Yang Q. Federated machine learning: concept and applications. ACM Transactions on Intelligent Systems Technology,2019,10(2):12:1-12:19 被引 4    
17.  . Study on channel model for frequencies from 0.5 to 100 GHz. 3GPP TR 38.901,2019 被引 1    
18.  Guo C. Advances on exploiting polarization in wireless communications: channels, technologies, and applications. IEEE Communications Surveys and Tutorials,2017,19(1):125-166 被引 3    
19.  Pereira P R. From delaytolerant networks to vehicular delay-tolerant networks. IEEE Communications Surveys and Tutorials,2012,14(4):1166-1182 被引 13    
20.  Voyiatzis A G. A survey of delay-and disruption-tolerant networking applications. Journal of Internet Engineering,2012,5(1):331-344 被引 3    
引证文献 1

1 丁菊丽 一次黑潮海洋锋强迫下的蒸发波导突变性与非均匀性的观测与模拟研究 气象学报,2021,79(6):1049-1062
被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号