帮助 关于我们

返回检索结果

阳极氧化对TiAl合金高温氧化行为和力学性能的影响
Effect of the anodization on high tempreture oxidation behavior and mechanical properties of TiAl alloy

查看参考文献21篇

包雅婷 1   王亚楠 1   郑磊 2   林向军 2   侯广亚 1   唐谊平 1   伍廉奎 1,3 *  
文摘 采用电化学阳极氧化技术在含NH4F的乙二醇电解液中对TiAl合金进行阳极氧化处理。研究阳极氧化对TiAl合金高温氧化行为和力学性能的影响。结果表明:由于“卤素效应”,阳极氧化处理的TiAl合金经高温氧化后表面形成致密、连续的Al_2O_3氧化膜,有效阻止了氧的内扩散,进而显著提高合金的抗高温氧化性能。经1000 ℃氧化100 h后,阳极氧化试样增重由未经阳极氧化处理试样的85.86 mg/cm~2降至0.67 mg/cm~2。另一方面,阳极氧化TiAl合金表面硬度和弹性模量随高温氧化时间延长呈先降低后升高的趋势。阳极氧化TiAl合金在高温服役后,合金的摩擦系数较未经阳极氧化处理试样上升,但表面耐磨性先降低后升高。这是由于TiAl合金经阳极氧化后,表面形成了一层富铝含氟氧化膜,由于氧化膜中F元素在高温氧化过程中与Ti、Al结合形成卤化物,卤化物蒸气选择性扩散在原始氧化膜处形成致密的Al_2O_3保护膜。阳极氧化对TiAl合金力学性能的影响主要是由于氧化膜中Al_2O_3的含量变化所致。
其他语种文摘 TiAl alloy was electrochemically anodized in ethylene glycol electrolyte containing with NH4F to prepare anodic film. The influence of anodization treatment on the oxidation behavior and mechanical properties of the anodized TiAl alloy were then characterized. Results shown that based on the halogen effect a continuous and dense Al_2O_3 oxide scale will generate on the anodized TiAl alloy after high temperature oxidation. After oxidation at 1000 ℃ for 100 h, the weight gain of the anodized TiAl alloy was dramatically decreased from 85.86 mg/cm~2 to 0.67 mg/cm~2. Moreover, it is shown that the surface hardness and elastic modulus of the anodized TiAl alloy decreased first and then increased with the prolonging of oxidation time. Meanwhile, the friction coefficient of the anodized TiAl alloy increased comparing to the bare TiAl alloy. The surface wear resistance of the anodized TiAl alloy exhibited similar phenomena. This is because that during high temperature oxidation process, aluminum fluorides selectively transport to the surface through pores or micro-cracks, and are oxidized to Al_2O_3 at the surface region. The influence of anodization treatment on the mechanical properties of the anodized TiAl alloy is attributed to the Al_2O_3 content contained in the oxide scale.
来源 航空材料学报 ,2021,41(2):72-81 【核心库】
DOI 10.11868/j.issn.1005-5053.2020.000129
关键词 钛铝合金 ; 阳极氧化 ; 高温氧化 ; 卤素效应 ; 力学性能
地址

1. 浙江工业大学材料科学与工程学院, 杭州, 310014  

2. 军事科学院国防工程研究院, 北京, 100850  

3. 中山大学材料学院, 广州, 510275

语种 中文
文献类型 研究性论文
ISSN 1005-5053
学科 金属学与金属工艺
基金 国家自然科学基金项目
文献收藏号 CSCD:6958233

参考文献 共 21 共2页

1.  彭小敏. TiAl基合金高温氧化及防护的研究进展. 中国有色金属学报,2010,20(6):1116-1130 被引 27    
2.  Solecka M. New insight on study of Ni-base alloy clad layer after oxidation at 650℃. Corrosion Science,2019,149:244-248 被引 3    
3.  汤守巧. TiAl基合金高温抗氧化研究进展. 稀有金属,2017,41(1):81-93 被引 11    
4.  Dai J J. Microstructure and high temperature oxidation behavior of Ti-Al-Nb-Si coatings on Ti-6Al-4V alloy. Journal of Alloys and Compounds,2018,765:46-57 被引 5    
5.  Xiang L. Microstructural characteristics and dynamic recrystallization behavior of β-γ TiAl based alloy during high temperature deformation. Intermetallics,2018,97:52-57 被引 3    
6.  Ping F P. Alloying effects on properties of Al_2O_3 and TiO_2 in connection with oxidation resistance of TiAl. Intermetallics,2016,68:57-62 被引 2    
7.  Yang H M. Effect of Al elements on microstructure and hardness of TiAl-6Nb alloys. Chemical Engineer,2018,32(7):14-17 被引 1    
8.  Li M G. The effect of boron addition on the high-temperature properties and microstructure evolution of high Nb containing TiAl alloys. Materials Science and Engineering: A,2018,733:190-198 被引 4    
9.  Kanjer A. Improving the high temperature oxidation resistance of pure titanium by shot-peening treatments. Surface and Coatings Technology,2018,343:93-100 被引 4    
10.  Malecka J. Effect of an Al_2O_3 coating on the oxidation process of a γ-TiAl phase based alloy. Corrosion Science,2012,63:287-292 被引 10    
11.  Su Y. Oriented porous anodic oxide layers on Ti-50Al with outstanding oxidation resistance at 800℃. Corrosion Science,2019,159:108146-10855 被引 3    
12.  Mo M H. High temperature oxidation behavior and anti-oxidation mechanism of Ti50Al anodized in ionic liquid. Surface and Coatings Technology,2016,307:190-199 被引 6    
13.  Wu L K. Oxidation behavior of Ti45Al8.5Nb alloy anodized in NH_4F containing solution. Corrosion Science,2020,166:108447-108457 被引 5    
14.  Wu L K. Improving the hightemperature oxidation resistance of TiAl alloy by anodizing in methanol/NaF solution. Oxidation of Metals,2018,90(5/6):617-631 被引 7    
15.  Cheng F. Friction and wear properties of a high Nb-containing TiAl alloy against WC-8Co, Si_3N_4, and GCr15 in an unlubricated contact. Intermetallics,2019,106:7-12 被引 3    
16.  Mengis L. High-temperature sliding wear behavior of an intermetallic γ-based TiAl alloy. Wear,2019,426/427:341-347 被引 3    
17.  Zschau H E. Surface chemistry evolution of F-doped Ni-base superalloy upon heat treatment. Materials and Corrosion,2017,68(2):220-227 被引 2    
18.  Donchev A. Oxidation protection of several intermetallic TixAly alloys by fluorine. Advances in Materials and Processing Technologies,2016,2(4):471-479 被引 1    
19.  Wang C. Oxidation inhibition of γ-TiAl alloy at 900℃by inorganic silicate composite coatings. Corrosion Science,2013,76:284-291 被引 8    
20.  夏俊捷. 基于卤素效应的阳极氧化技术提高Ti_(48)Al_5Nb合金抗高温氧化性能. 中国腐蚀与防护学报,2019,39(2):96-105 被引 2    
引证文献 2

1 李哲轩 基于电化学氧化处理提高TiAl合金抗高温氧化性能研究进展 中国有色金属学报,2021,31(11):3182-3191
被引 2

2 徐鹤 粉末高温合金FGH4095和FGH4096的抗高温氧化性能 材料工程,2023,51(4):122-131
被引 1

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号