帮助 关于我们

返回检索结果

岩浆-热液系统中铟的成矿作用
Metallogenesis of indium in magmatic hydrothermal system

查看参考文献125篇

陈程 1,2,3   赵太平 1,2 *  
文摘 铟作为支撑新兴高科技产业发展的关键金属,主要应用于电子工业、半导体、焊料合金及航空航天等领域,对国家安全和经济发展至关重要。当前铟的重要来源是与花岗质岩浆有关的锡多金属矿床,其中铟的富集程度远超其他类型矿床。文章在简要概括铟矿床类型的基础上,探讨了铟在岩浆-热液系统各演化阶段的富集过程以及锡、铟同步富集的原因。在岩浆演化过程中,如果有黑云母、角闪石等铟的主要载体矿物发生分离结晶,铟的成矿潜力便会被大大削弱。当铟进入成矿流体后,铟的氯化物、氟化物和氢氧化物对铟的搬运有重要作用,流体的温度、pH值以及金属配体的种类和浓度是控制铟迁移和沉淀的重要因素。而当铟从流体中沉淀时,因四次配位的In3+与贱金属硫化物(闪锌矿、黄铜矿、黝铜矿等矿物)中四次配位的金属离子更相似,造成大量的铟以类质同象替换的方式进入硫化物而与锡发生分离;沉淀后的含铟矿物在后期地质过程中可能经历铟的重新活化、迁移和扩散等过程,导致铟再次富集。铟的富集过程与锡有关,这可能是由于铟和锡具有相似的地球化学性质,二者在表生环境中活动性弱,会滞留在经历化学风化的富黏土的沉积岩中,这样的沉积岩经变质作用会形成大量的云母类矿物,而黑云母作为铟和锡的共同载体,其在高温条件下发生分解可能是导致铟和锡在矿床中同步富集的根本原因。此外,新近在一些贫锡岩浆热液矿床中发现铟也能够超常富集,其机理尚不清楚。加强表生环境中锡与铟预富集过程的研究以及贫锡矿床中铟富集机制的研究,对查明铟-锡共生、分离机制和完善铟成矿理论至关重要。
其他语种文摘 Indium,as one of critical elements,is widely used in such high-tech industries as electronic industry,semiconductors,solder alloys and aerospace industries,thus playing a significant role in national security and economy.Since the indium concentration in granite-related tin polymetallic deposits are much higher than that in other types of deposits,the In-Sn polymetallic deposits are ideal for studying indium mineralization.Indium-rich deposits are known to be genetically associated with granitic magmatism.During magmatic evolution,the potentiality of indium ore formation decreases greatly if the main host minerals of indium,such as biotite and hornblende,crystallize and separate from the melt.In hydrothermal fluid,indium,which is closely associated with tin,can be transported in the form of chlorides,fluorides and hydroxides of indium.Such a process is controlled by temperature,pH as well as types and concentrations of ligands in ore-forming fluids.When indium precipitates,it mainly enters sulfides (e.g.sphalerite,chalcopyrite and tetrahedrite) due to similar ionic radius of In3+ to metal elements in Zn-Cu-bearing sulfides and decouples with tin.After precipitation,these indium-bearing minerals might undergo subsequent geological processes,resulting in reactivation,migration and diffusion of indium and contributing to further indium enrichment.The close association of tin and indium might result from similar geochemical behaviors.They are immobile in surficial environments and tend to remain in clay-rich sediments during chemical weathering,which would form biotite and muscovite during metamorphism.Then the breakdown of biotite at high temperature would result in synchronous enrichment of indium and tin in magma source.Recently,significant indium enrichments have been found in tin-poor polymetallic deposits associated with granitic magmatic hydrothermal systems,but the enrichment mechanism of indium in such a system remains unclear.Consequently,future studies should focus on the pre-enrichment processes of indium and tin as well as the enrichment mechanisms of indium in tin-poor polymetallic deposits so as to obtain a better understanding of the coupling and decoupling of tin-indium enrichment and the metallogenesis of indium.
来源 矿床地质 ,2021,40(2):206-220 【核心库】
DOI 10.16111/j.0258-7106.2021.02.002
关键词 地质学 ; 关键金属 ; 岩浆热液 ; 铟矿床 ; 闪锌矿 ; 富集机制
地址

1. 中国科学院广州地球化学研究所, 中国科学院矿物学与成矿学重点实验室, 广东, 广州, 510640  

2. 中国科学院深地科学卓越创新中心, 中国科学院深地科学卓越创新中心, 广东, 广州, 510640  

3. 中国科学院大学地球与行星科学学院, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 0258-7106
学科 地质学
基金 国家自然科学基金项目 ;  国家重点研发计划深地专项
文献收藏号 CSCD:6949077

参考文献 共 125 共7页

1.  Andersen J C O. Indium mineralisation in SW England: Host parageneses and mineralogical relations. Ore Geology Reviews,2016,78:213-238 被引 8    
2.  Al-Ani T. Mineralogical and petrographic characteristics of Indium and REE-bearing accessory phases in the Kymi granite stock, southern Finland. Natural Resources,2018,9(2):23-41 被引 1    
3.  Bauer M E. Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: Insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Mineralium Deposita,2019,54(2):237-262 被引 9    
4.  Bauer M E. Indium-bearing sulfides from the Hammerlein skarn deposit, Erzgebirge, Germany: Evidence for late-stage diffusion of indium into sphalerite. Mineralium Deposita,2019,54(2):175-192 被引 10    
5.  Belissont R. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac-Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochimica et Cosmochimica Acta,2014,126:518-540 被引 50    
6.  Belissont R. Distribution and oxidation state of Ge, Cu and Fe in sphalerite by μ-XRF and K-edge μ-XANES: insights into Ge incorporation, partitioning and isotopic fractionation. Geochimica et Cosmochimica Acta,2016,177:298-314 被引 22    
7.  Bente K. Experimental studies on the solid state diffusion of Cu+In in ZnS and on "Disease", DIS (Diffusion Induced Segregations), in sphalerite and their geological applications. Mineralogy and Petrology,1995,53(4):285-305 被引 3    
8.  Benzaazoua M. Tin and indium mineralogy within selected sampes from the Neves Corvo ore deosit (Portugal): A multidisciplinary study. Mineral Engineering,2003,16(11):1291-1302 被引 10    
9.  Broman C. Deposition conditions for the indium-bearing polymetallic quartz veins at Sarvlaxviken, south-eastern Finland. Mineralogical Magazine,2018,82(S1):S43-S59 被引 1    
10.  Cacho A. Mineralogy and distribution of critical elements in the Sn-W-Pb-Ag-Zn Huanuni deposit, Bolivia. Minerals,2019,9(12):753 被引 1    
11.  Cherniak D J. Diffusion in carbonates, fluorite, sulfide minerals, and diamond. Reviews in Mineralogy and Geochemistry,2010,72(1):871-897 被引 2    
12.  Clark C. How does the continental crust get really hot?. Elements,2011,7:235-240 被引 35    
13.  Cook N J. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta,2009,73(16):4761-4791 被引 137    
14.  Cook N J. The mineralogy and mineral chemistry of indium in sulphide deposits and implications for mineral processing. Hydrometallurgy,2011,108(3/4):226-228 被引 15    
15.  Cook N J. Indium mineralisation in A-type granites in southeastern Finland: Insights into mineralogy and partitioning between coexisting minerals. Chemical Geology,2011,284(1/2):62-73 被引 20    
16.  Cook N J. Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via-XANES spectroscopy. American Mineralogist,2012,97(2/3):476-479 被引 17    
17.  Dill H G. Sulfidic and non-sulfidic indium mineralization of the epithermal Au-Cu-Zn-Pb-Ag deposit San Roque (Provincia Rio Negro, SE Argentina)-with special reference to the "indium window"in zinc sulfide. Ore Geology Reviews,2013,51:103-128 被引 19    
18.  Frenzel M. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type-A meta-analysis. Ore Geology Reviews,2016,76:52-78 被引 48    
19.  Gaskov I V. Physicochemical Conditions of the formation of elevated indium contents in the ores of tin-sulfide and base-metal deposits in Siberia and Far East: Evidence from thermodynamic modeling. Geochemistry International,2020,58(3):291-307 被引 1    
20.  George L L. Partitioning of trace elements in co-crystallized sphalerite-galena-chalcopyrite hydrothermal ores. Ore Geology Reviews,2016,77:97-116 被引 24    
引证文献 4

1 侯文达 “铟”为有你,生活多彩 矿物岩石地球化学通报,2022,41(4):905-911
被引 0 次

2 田静 滇东南都龙锡多金属矿床中闪锌矿微量元素组成特征及其地质意义 大地构造与成矿学,2022,46(6):1148-1166
被引 1

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号