帮助 关于我们

返回检索结果

微束分析测试技术十年(2011~2020)进展与展望
Progress of Microbeam Analytical Technologies in the Past Decade (2011-2020)and Prospect

查看参考文献320篇

陈意 1   胡兆初 2   贾丽辉 1   李金华 1   李秋立 1   李晓光 1   李展平 3   龙涛 4   唐旭 1   王建 5   夏小平 6   杨蔚 1   原江燕 1   张迪 1   李献华 1 *  
文摘 现代地球科学研究的重大突破在很大程度上取决于观测和分析技术的创新。新世纪以来,我国地球科学领域引进了一批高性能新型微束分析仪器设备,建立了一批高规格的实验室。本文回顾了近十年来微束分析技术与方法的主要进展及其在地球科学研究中的应用实例,包括电子探针、扫描电镜、透射电镜、大型离子探针、纳米离子探针、飞行时间二次离子质谱、激光剥蚀等离子体质谱、激光诱导原子探针、原子探针技术、显微红外光谱、同步辐射等,这些分析技术的进步和广泛应用极大地提高了我们对地球和行星演化历史及许多地质过程的理解。今后,应加快微束分析的新技术、新方法和新标准的开发,特别是高水平人才队伍建设,提高创新能力并在国际学术舞台上发挥重要作用。
其他语种文摘 Major breakthroughs in the modern earth science research depend largely on the innovation of observation and analytical technologies. The Chinese geoscience community has possessed many state-of-the-art laboratories and advanced microbeam analytical instruments since the beginning of the new century. In this paper, we review the major progresses of various microbeam analytical technologies and methods, including EPMA, SEM, TEM, LG-SIMS, NanoSIMS, TOFSIMS, LA-Q/ HR/ MC-ICPMS, LI-APT, FTIR, and Synchrotron Radiation, as well as their applications in earth sciences. Our understanding of the evolutionary hisotory of the Earth and planets and many geological processes had been improved greatly by applications of microbeam analytical technologies. To improve our innovation ability and to play more important roles in the international academic arena, we need to develope more new technologies, methods and standards for microbeam analyses in the future.
来源 矿物岩石地球化学通报 ,2021,40(1):1-35 【核心库】
DOI 10.19658/j.issn.1007-2802.2020.39.097
关键词 微束分析 ; 离子探针 ; 电子探针 ; 激光剥蚀 ; 同步辐射
地址

1. 中国科学院地质与地球物理研究所, 北京, 100029  

2. 中国地质大学(武汉), 地质过程与矿产资源国家重点实验室, 武汉, 430074  

3. 清华大学分析中心, 北京, 100084  

4. 中国地质科学院地质研究所, 北京, 100037  

5. Canadian Light Source Inc., University of Saskatchewan, Canada, Saskatoon, S7N2V3  

6. 中国科学院广州地球化学研究所, 广州, 510640

语种 中文
文献类型 综述型
ISSN 1007-2802
学科 地质学
文献收藏号 CSCD:6900355

参考文献 共 320 共16页

1.  Alleon J. Chemical nature of the 3.4 Ga Strelley Pool microfossils. Geochemical Perspectives Letters,2018,7:37-42 被引 1    
2.  Artioli G. Powder diffraction and synchrotron radiation. Synchrotron Radiation: Basics, Methods and Applications,2015:319-336 被引 1    
3.  Audetat A. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostandards and Geoanalytical Research,2015,39(2):171-184 被引 16    
4.  Azadbakht Z. High-resolution LA-ICP-MS traceelement mapping of magmatic biotite: A new approach for studying SYN-To post-magmatic evolution. The Canadian Mineralogist,2020,58(3):293-311 被引 1    
5.  Bao Z A. Simultaneous determination of trace elements and lead isotopes in fused silicate rock powders using a boron nitride vessel and fsLA-(MC)-ICP-MS. Journal of Analytical Atomic Spectrometry,2016,31(4):1012-1022 被引 14    
6.  Bao Z A. Non-matrix-matched determination of lead isotope ratios in ancient bronze artifacts by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry. International Journal of Mass Spectrometry,2016,402:12-19 被引 7    
7.  Bao Z A. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS. International Journal of Mass Spectrometry,2017,421:255-262 被引 29    
8.  Bao Z A. Determination of lead isotope ratios in Mn-Fe-rich nodules by laser ablation multi-collector inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry,2018,33(12):2143-2152 被引 1    
9.  Bao Z M. Petrography and chronology of lunar meteorite Northwest Africa 6950. Science China Information Sciences,2020,63(4):140902 被引 2    
10.  Bassett W A. Synchrotron radiation: Applications in the earth sciences. Annual Review of Earth and Planetary Sciences,1990,18:387-447 被引 1    
11.  Batanova V G. Trace element analysis of olivine: High precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chemical Geology,2015,419:149-157 被引 12    
12.  Batson P E. Sub-angstrom resolution using aberration corrected electron optics. Nature,2002,418(6898):617-620 被引 12    
13.  Benzerara K. Nanoscale detection of organic signatures in carbonate microbialites. Proceedings of the National Academy of Sciences of the United States of America,2006,103(25):9440-9445 被引 6    
14.  Berger D. IOP Conf. Ser.: Mater. Sci. Eng.. 55,2014:012002 被引 2    
15.  Bergmann U. Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proceedings of the National Academy of Sciences of the United States of America,2010,107(20):9060-9065 被引 2    
16.  Bocker C. New insights into the crystallization of cordierite from a stoichiometric glass by in situ hightemperature SEM. Journal of Materials Science,2014,49(7):2795-2801 被引 1    
17.  Boller E. Synchrotron X-ray microtomography: A high resolution, fast and quantitative tool for rock characterization. Advances in X-ray Tomography for Geomaterials,2010:125-133 被引 1    
18.  Brison J. TOF-SIMS 3D imaging of native and non-native species within hela cells. Analytical Chemistry,2013,85(22):10869-10877 被引 6    
19.  Bryson J F J. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature,2015,517(7535):472-475 被引 2    
20.  Bunaciu A A. X-ray diffraction: Instrumentation and applications. Critical Reviews in Analytical Chemistry,2015,45(4):289-299 被引 6    
引证文献 11

1 王松 微区原位元素及同位素分析标准物质研究进展 质谱学报,2021,42(5):641-655
被引 1

2 陈妍 粤北长江铀矿田花岗岩独居石U-Pb同位素定年及其地质意义 岩矿测试,2022,41(1):1-13
被引 1

显示所有11篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号