帮助 关于我们

返回检索结果

喀斯特筑坝河流中生物碳泵效应的碳施肥及对水化学时空变化的影响—以贵州平寨水库及红枫湖为例
Spatiotemporal variations of hydrochemistry in karst dammed rivers and carbon fertilization effect of biological carbon pump:A case study of Pingzhai Reservoir and Lake Hongfeng in Guizhou Province

查看参考文献56篇

韩翠红 1,2   孙海龙 1 *   魏榆 1   鲍乾 1,2   晏浩 1  
文摘 耦联水生光合作用的碳酸盐风化碳汇是全球碳循环的重要组成部分,而生物碳泵效应是稳定碳酸盐风化碳汇的关键机制.河流筑坝后,生物碳泵效应的变化、控制因素及对水化学影响的研究甚少.本研究对2个喀斯特筑坝河流平寨水库和红枫湖进行系统采样,以研究河流筑坝后生物碳泵效应的变化、控制因素及对水化学的影响.研究结果表明,入库河流的水化学变化不明显,而2个水库的水化学则表现出显著的季节变化特征,具体表现为水库的水温和pH均呈现出夏季高、冬季低的变化特征,而电导率(EC)、HCO_3~-浓度和pCO_2则表现出夏季低、冬季高的季节变化特征.以叶绿素a(Chl.a)浓度和溶解氧(DO)饱和度指代的生物碳泵效应则是在夏季最强、冬季最弱.生物碳泵效应利用溶解性无机碳(DIC),形成有机质并释放出氧气,是造成夏季水库pH值和DO饱和度升高,电导率(EC)、HCO_3~-浓度和pCO_2降低的主要因素.空间上,水库的Chl.a浓度及DO饱和度均大于河水,EC、HCO_3~-浓度和pCO_2均小于河水,这表明河流筑坝后,由于水库的“湖泊化”导致水库的生物碳泵效应显著提高.通过对Chl.a与碳、氮和磷浓度及化学计量比的相关性分析发现,平寨水库和红枫湖的生物碳泵效应受到碳施肥的影响.平寨水库和红枫湖水库生物碳泵效应碳施肥机制的发现,表明在喀斯特地区,生物碳泵效应不仅受到氮磷元素的控制,也受到碳元素的控制,因此在富营养化湖泊治理时,也应考虑碳的影响.
其他语种文摘 Carbonate mineral weathering coupled with aquatic photosynthesis on the continents is an important part of the global carbon cycle.The biological carbon pump is a key mechanism for stabilizing carbonate weathering-related carbon sinks.Little research has been done on the changes and control factors of biological carbon pump effects and their effects on hydrochemistry after the damming of river.In this study,two dammed karst rivers (Pingzhai Reservoir and Lake Hongfeng) were systematically sampled to study the changes and control factors of biological carbon pump effect and their effects on the variations of hydrochemistry.The results show that the hydrochemistry of the rivers have no obvious changes,while the hydrochemistry of the two reservoirs show significant seasonal variations.The temperature and pH of the two reservoirs are both higher in summer and lower in winter,while electrical conductivity (EC),HCO_3~- concentration and pCO_2 show lower in summer and higher in winter.The biological carbon pump effect which is indicated by the chlorophyll-a (Chl.a) concentration and dissolved oxygen saturation is stronger in summer and weaker in winter.Dissolved inorganic carbon is consumed by aquatic phototrophs to form organic matter and release oxygen,which are the main factors that cause the increase of pH and dissolved oxygen (DO) in summer,and the decrease of electric conductivity(EC),HCO_3~- concentration,and pCO_2 in winter.In the space,the Chl.a and DO concentrations of the reservoirs are larger than that in the rivers,and EC,HCO_3~- concentration and pCO_2 are lower than that in the rivers.This indicates the biological carbon pump effect of the reservoir is significantly increased due to river impoundment after the rivers were dammed.Correlation analysis of Chl.a with carbon,nitrogen,phosphorus concentrations and stoichiometry revealed that the biological carbon pump effect of the Pingzhai Reservoir and Lake Hongfeng is affected by carbon fertilization effect.The carbon fertilization effect of biological carbon pump detected here may indicate that aquatic photosynthesis in karst damped rivers may be controlled not only by N and/or P but also by C.This research may have implications for control of eutrophication in karst lakes with high alkaline.
来源 湖泊科学 ,2020,32(6):1683-1694 【核心库】
DOI 10.18307/2020.0610
关键词 喀斯特筑坝河流 ; 平寨水库 ; 红枫湖 ; 生物碳泵效应 ; 水化学 ; 时空变化 ; 碳施肥
地址

1. 中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081  

2. 中国科学院大学, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 1003-5427
学科 地球物理学
基金 国家自然科学基金委—贵州喀斯特科学研究中心联合项目 ;  国家自然科学基金项目 ;  中国科学院战略性先导科技专项
文献收藏号 CSCD:6851887

参考文献 共 56 共3页

1.  刘再华. 一种由全球水循环产生的可能重要的CO2汇. 科学通报,2007,52(20):2418-2422 被引 73    
2.  Ciais P. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013:465-570 被引 14    
3.  Houghton R A. Where is the residual terrestrial carbon sink?. Global Change Biology,2018,24(8):3277-3279 被引 4    
4.  Liu Z. Large and active CO_2 uptake by coupled carbonate weathering. Earth-Science Reviews,2018,182:42-49 被引 19    
5.  Kirschbaum M U F. Towards a more complete quantification of the global carbon cycle. Biogeosciences,2019,16(3):831-846 被引 3    
6.  Barth J A C. Carbon cycle in St. Lawrence aquatic ecosystems at Cornwall (Ontario),Canada: seasonal and spatial variations. Chemical Geology,1999,159(1/4):107-128 被引 15    
7.  Cole J J. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems,2007,10(1):172-185 被引 174    
8.  Tranvik L J. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography,2009,54(6part2):2298-2314 被引 139    
9.  Yang R. Temporal variations in riverine hydrochemistry and estimation of the carbon sink produced by coupled carbonate weathering with aquatic photosynthesis on land: an example from the Xijiang River,a large subtropical karst-dominated river in China. Environmental Science and Pollution Research,2020(1):1-13 被引 1    
10.  Liu Z. A new direction in effective accounting for the atmospheric CO_2 budget: Considering the combined action of carbonate dissolution,the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth-Science Reviews,2010,99(3/4):162-172 被引 66    
11.  Liu Z. Significance of the carbon sink produced by H_2 O-carbonate-CO_2-aquatic phototroph interaction on land. Science Bulletin,2015,60(2):182-191 被引 15    
12.  Liu H. Diurnal hydrochemical variations in a karst spring and two ponds,Maolan Karst Experimental Site,China: Biological pump effects. Journal of Hydrology,2015,522:407-417 被引 18    
13.  Yang M X. Organic carbon source tracing and DIC fertilization effect in the Pearl River: Insights from lipid biomarker and geochemical analysis. Applied Geochemistry,2016,73:132-141 被引 8    
14.  杨明星. 基于生物标志物法的珠江流域有机碳溯源及DIC施肥效应研究有机碳溯源及DIC施肥效应研究. 地球与环境,2017,45(1):46-56 被引 9    
15.  Chen B. Coupled control of land uses and aquatic biological processes on the diurnal hydrochemical variations in the five ponds at the Shawan Karst Test Site,China: implications for the carbonate weathering-related carbon sink. Chemical Geology,2017,456:58-71 被引 12    
16.  Zeng S. Seasonal and diurnal variations in DIC,NO-3 and TOC concentrations in spring-pond ecosystems under different land-uses at the Shawan Karst Test Site,SW China: Carbon limitation of aquatic photosynthesis. Journal of Hydrology,2019,574:811-821 被引 4    
17.  Abell J M. Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: Implications for eutrophication control. Ecosystems,2010,13(7):966-977 被引 29    
18.  Schindler D W. Reducing phosphorus to curb lake eutrophication is a success. Environmental Science & Technology,2016,50(17):8923-8929 被引 58    
19.  Qin B. Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environmental Science & Technology,2020 被引 1    
20.  Schindler D. Atmospheric carbon dioxide: its role in maintaining phytoplankton standing crops. Science,1972,177(4055):1192-1194 被引 4    
引证文献 11

1 马松 喀斯特水库水化学特征及对无机碳沉积通量的指示 湖泊科学,2021,33(6):1701-1713
被引 3

2 王翠 喀斯特流域水土流失对水库碳汇效应的影响 水土保持通报,2021,41(6):1-7
被引 2

显示所有11篇文献

论文科学数据集

1. 桂林地区地下河逐月水样监测数据(2003-2005)

数据来源:
国家青藏高原科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号