帮助 关于我们

返回检索结果

青藏高原尼洋河流域化学风化的季节变化特征和影响因素
Seasonal variations of chemical weathering and its controlling factors of Nyang River in the Tibetan Plateau

查看参考文献48篇

孟俊伦 1,2   郭建阳 1   吴婕 1,2   赵志琦 3 *  
文摘 流域风化是理解大陆岩石化学风化对全球气候变化的反馈机制的重要途径,目前的研究集中在大河流域,小流域特别是高寒地区流域化学风化的影响因素尚不确定。本文选择岩性相对单一、人为活动干扰少的青藏高原尼洋河流域为研究对象,开展一个水文年的采样分析,阐明高寒地区流域岩石化学风化的季节变化特征及其影响因素。研究结果显示:尼洋河河水离子主要来源于碳酸盐岩风化和硅酸盐岩风化,对河水中阳离子贡献量分别达到60%和29%,风化速率分别为0.20 — 19.00 t · km~(–2) · month~(–1)和0.09 — 0.80 t · km~(–2) · month~(–1),年平均值分别为11.90 t · km~(–2) · a~(–1)和4.38 t · km~(–2) · a~(–1)。在一个水文年内,碳酸盐岩风化明显受到季节变化的影响,而硅酸盐岩风化对季节变化的响应不明显,总体表现为雨季风化速率增加,旱季风化速率降低。地表径流是控制尼洋河流域化学风化的重要因素,径流增大,促进碳酸盐岩和硅酸盐岩风化,但岩石的溶解动力特征会限制径流对风化速率的促进作用。碳酸盐岩溶解速率大,径流增大能持续有效促进碳酸盐岩风化;而硅酸盐岩溶解速率小,随着径流量增大,风化速率增速降低。温度升高能有效促进尼洋河流域的岩石风化,提高岩石矿物的溶解速率。温度也能通过影响径流变化,间接影响流域的风化。位于高寒地区的尼洋河流域气候因素之间相互影响,也影响着物理风化和化学风化。为此,在高寒地区流域展开监测周期更长、采样密度更高的工作,将有助于更好地理解气候因素对风化作用的影响规律。
其他语种文摘 Background, aim, and scope Chemical weathering of continental silicate rocks and carbonate rocks is closely related to global climate change. Study of weathering in watersheds is an important way to understand how continental weathering responds to global climate change. Previous researches focused on large river basins, and few of them worked on small river basins. In particular, the influencing factors of chemical weathering in river basins in high and cold regions are still uncertain. The Nyang River Basin on the Tibetan Plateau with relatively simple lithology and less human disturbance was selected as the research object. A hydrological year sampling analysis was performed to explain the seasonal variation characteristics of rock chemical weathering rate and its influencing factors in the alpine region. Materials and methods In the present study, a hydrological year (2017—2018) sampling analysis was conducted at the lowest stream of Nyang River Basin. Annual variation of chemical compositions of surface river water were analyzed, including the major cations (Na+, K+, Mg~(2+), Ca~(2+)), soluble silicon and major anions (F~-,Cl~-,SO_4~(2-),NO_3~- and HCO_3~-). Based on chemical composition analyses, contributions of four end-members (silicate, carbonate, hotspring and atmosphere) to riverine cations were estimated. Coupled with discharge data calculated by a hydrological model and water temperature measured in the field, weathering rates of silicate and carbonate as well as their responses to discharge and temperature were investigated. Results Results show that the water ions of the Nyang River are mainly derived from the weathering of carbonate rocks and the weathering of silicate rocks, contributing 60% and 29% of cations to the river water, respectively, and the weathering rates are 0.20 — 19.00 t · km~(–2) · month~(–1) and 0.09 — 0.80 t · km~(–2) · month~(–1), with annual averages of 11.90 t · km~(–2) · a~(–1) and 4.38 t · km~(–2) · a~(–1), respectively. In a hydrological year, the weathering of carbonate rocks is obviously affected by seasonal changes, while the response of silicate rock weathering to seasonal changes is insignificant. In general, the weathering rate increases in the rainy season and decreases in the dry season. Discussion Discharge is an important factor controlling chemical weathering in the basin. The increase of discharge promotes the weathering of carbonate and silicate rocks, but the dissolution dynamics of rocks will limit the effect of discharge on the weathering rate. The increase of discharge can continue to effectively promote the weathering of carbonate rocks because of the large dissolution rate, while for the silicate rocks with small dissolution rate, the effect of discharge on weathering is weakened when discharge continues to increase. Different dissolution dynamic characteristics of rocks are important reasons for the different responses of carbonate rock weathering and silicate rock weathering to seasonal changes. Increased temperature can effectively promote rock weathering in the Nyang River Basin by increasing the dissolution rate of rock minerals. Temperature can also import an effect on weathering of the watershed by influencing discharge. Conclusions From above, it can be concluded that, in Nyang River basin, discharge can be a primary control on chemical weathering, and temperature is relatively minor control, but temperature can also affect glacier activities as well as discharge in this alpine area.
来源 地球环境学报 ,2020,11(2):190-203 【扩展库】
DOI 10.7515/JEE192029
关键词 尼洋河 ; 化学风化 ; 季节变化 ; 气候因素
地址

1. 中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081  

2. 中国科学院大学, 北京, 100049  

3. 长安大学地球科学与资源学院, 西安, 710054

语种 中文
文献类型 研究性论文
ISSN 1674-9901
学科 地球物理学
基金 国家自然科学基金项目 ;  长安大学中央高校基本科研业务费专项资金
文献收藏号 CSCD:6813638

参考文献 共 48 共3页

1.  达瓦次仁. 尼洋河流域水文特性分析. 水文,2008,28(4):92-94 被引 15    
2.  蒋浩. 青藏高原流域岩石风化速率及其控制机制——以贡嘎山地区典型地质背景小流域研究为例. 第四纪研究,2018,38(1):278-286 被引 6    
3.  黄露. 中国西南三江流域风化的季节性变化特征. 地球与环境,2015,43(5):512-521 被引 8    
4.  李振清. 青藏高原碰撞造山过程中的现代热水活动,2002 被引 11    
5.  刘旭. 青藏高原小流域化学风化过程及其CO_2消耗通量:以尼洋河为例. 生态学杂志,2018,37(3):688-696 被引 6    
6.  吕琳莉. 西藏尼洋河水体重金属分布特征及风险评价. 农业工程学报,2019,35(9):193-199 被引 8    
7.  吕琳莉. 尼洋河流域径流时空变化特性初步分析. 水力发电,2011,37(2):5-7 被引 6    
8.  冉光辉. 林芝地区降水的正态特征分析. 安徽农业科学,2013,41(14):6403-6405 被引 5    
9.  陶正华. 西南三江(金沙江、澜沧江和怒江)流域化学风化过程. 生态学杂志,2015,34(8):2297-2308 被引 10    
10.  王建群. 藏东南尼洋河流域降水径流水量平衡问题. 河海大学学报(自然科学版),2015,43(4):283-287 被引 5    
11.  王雨山. 马莲河流域化学风化的季节变化和影响因素. 环境科学,2018,39(9):4132-4141 被引 6    
12.  韦刚健. 珠江水系桂平、高要和清远站河水化学组成的季节变化及对化学风化研究的意义. 第四纪研究,2011,31(3):417-425 被引 9    
13.  张娜. 西藏尼洋河水质时空特征分析. 河南师范大学学报(自然科学版),2009,37(6):79-82 被引 8    
14.  张涛. 尼洋河流域水化学特征及其控制因素. 环境科学,2017,38(11):4537-4545 被引 45    
15.  Blum J D. Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series. Geology,1998,26(5):411-414 被引 48    
16.  Bluth G J S. Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta,1994,58(10):2341-2359 被引 26    
17.  Chetelat B. Geochemistry of the dissolved load of the Changjiang Basin rivers: anthropogenic impacts and chemical weathering. Geochimica et Cosmochimica Acta,2008,72(17):4254-4277 被引 78    
18.  Dalai T K. Major ion chemistry in the headwaters of the Yamuna river system: chemical weathering, its temperature dependence and CO_2 consumption in the Himalaya. Geochimica et Cosmochimica Acta,2002,66(19):3397-3416 被引 35    
19.  Evans M J. Hydrothermal source of radiogenic Sr to Himalayan rivers. Geology,2001,29(9):803-806 被引 3    
20.  Evans M J. Geothermal fluxes of alkalinity in the Narayani river system of central Nepal. Geochemistry, Geophysics, Geosystems,2004,5(8) 被引 4    
引证文献 3

1 江平 雅鲁藏布江水化学演变规律 环境科学,2023,44(6):3165-3173
被引 1

2 张俊文 青藏高原山地小河流溶解态Li同位素地球化学行为——以尼洋河为例 中国科学. 地球科学,2023,53(8):1886-1897
被引 0 次

显示所有3篇文献

论文科学数据集

1. 辽南石槽剖面红色风化壳地球化学特征数据集

数据来源:
国家对地观测科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号