帮助 关于我们

返回检索结果

基于加速度反馈增强的旋翼无人机抗风扰控制
Acceleration Feedback Enhanced Controller forWind Disturbance Rejection of Rotor Unmanned Aerial Vehicle

查看参考文献23篇

代波 1,2,3 *   何玉庆 1,2   谷丰 1,2   王骞翰 1   徐卫良 4  
文摘 为了提高无人机的风扰抑制能力,实现无人机安全飞行和精准控制,提出了一种基于加速度反馈的旋翼无人机抗风扰方法.该方法不需要改变原有的控制器结构,在原有的控制器基础上引入角加速度和线加速度反馈,从而实现更快速且更高精度的角度和位置跟踪,提升系统的扰动抑制能力.同时,为了将该算法部署在实际的无人机平台上,提出了一种简单、快速以及适用于加速度反馈的无人机参数辨识方法.结合该方法,将加速度反馈应用到一个六旋翼机上,并在户外持续风和阵风扰动环境下进行了实验验证.实验结果表明,加速度反馈增强型控制器可以有效地抑制这两种风扰,极大地提高了风扰条件下的无人机控制精度.
其他语种文摘 In order to enhance the wind rejection ability of unmanned aerial vehicle (UAV) to achieve safe flight and precision control, a wind disturbance rejection method based on acceleration feedback (AF) is proposed for rotor UAV. By introducing linear and angular AF into the original controller, a faster and more accurate attitude and position tracking performance can be obtained without changing the structure of the original controller. Moreover, a simple and fast UAV parameters identification method suitable for acceleration feedback is proposed to deploy AF on a practical UAV system. By using the proposed method, AF is deployed on a hex-rotor and tested in outdoor environment with continuous or gusty winds. The experimental results demonstrate that the AF enhanced controller can suppress these two kinds of wind disturbances effectively and the control accuracy of UAV system is greatly improved.
来源 机器人 ,2020,42(1):79-88 【核心库】
DOI 10.13973/j.cnki.robot.190187
关键词 无人机 ; 加速度反馈 ; 抗风扰 ; 参数辨识
地址

1. 中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 辽宁, 沈阳, 110016  

2. 中国科学院机器人与智能制造创新研究院, 辽宁, 沈阳, 110016  

3. 中国科学院大学, 北京, 100049  

4. 奥克兰大学, 新西兰, 奥克兰, 1010

语种 中文
文献类型 研究性论文
ISSN 1002-0446
学科 航空
基金 国家重点研发计划 ;  国家自然科学基金联合基金
文献收藏号 CSCD:6766437

参考文献 共 23 共2页

1.  Girard A R. Border patrol and surveillance missions using multiple unmanned air vehicles. IEEE Conference on Decision and Control,2004:620-625 被引 1    
2.  Qi J T. Search and rescue rotary-wing UAV and its application to the Lushan Ms 7.0 Earthquake. Journal of Field Robotics,2016,33(3):290-321 被引 2    
3.  曹蔚然. 一种可迭代基于多向自相关的航拍电力线图像增强方法. 机器人,2015,37(6):738-747 被引 3    
4.  Salih A L. Modelling and PID controller design for a quadrotor unmanned air vehicle. IEEE International Conference on Automation Quality and Testing Robotics,2010 被引 1    
5.  He Y Q. Acceleration feedback enhanced H_∞disturbance attenuation control. 33rd Annual Conference of the IEEE-Industrial-Electronics-Society,2007:839-844 被引 1    
6.  Nicotra M M. Nested saturation control of an UAV carrying a suspended load. American Control Conference,2014:3585-3590 被引 3    
7.  Madani T. Backstepping control for a quadrotor helicopter. IEEE/RSJ International Conference on Intelligent Robots and Systems,2006:3255-3260 被引 4    
8.  He Y Q. Acceleration-feedback-enhanced robust control of an unmanned helicopter. Journal of Guidance, Control, and Dynamics,2010,33(4):1236-1250 被引 7    
9.  Su J Y. On relationship between timedomain and frequency-domain disturbance observers and its applications. Journal of Dynamic Systems, Measurement, and Control,2016,138(9) 被引 1    
10.  刘一莎. 四旋翼飞行器的自抗扰飞行控制方法. 控制理论与应用,2015,32(10):1351-1360 被引 29    
11.  Han J Q. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics,2009,56(3):900-906 被引 396    
12.  Ohishi K. Microprocessorcontrolled DC motor for load-insensitive position servo system. IEEE Transactions on Industrial Electronics,1987,34(1):44-49 被引 27    
13.  Tomic T. Evaluation of acceleration-based disturbance observation for multicopter control. 13th European Control Conference,2014:2937-2944 被引 1    
14.  Xu W L. Experimental study of contact transition control incorporating joint acceleration feedback. IEEE/ASME Transactions on Mechatronics,2000,5(3):292-301 被引 6    
15.  Han J D. Acceleration feedback control for direct-drive motor system. IEEE/RSJ International Conference on Intelligent Robots and Systems,2000:1068-1074 被引 1    
16.  Lee S J. Robust acceleration control of a hexarotor UAV with a disturbance observer. IEEE Conference on Decision and Control,2016:4166-4171 被引 1    
17.  Escareno O J. Trajectory control of a quadrotor subject to 2D wind disturbances. Journal of Intelligent & Robotic Systems,2013,70(1/4):51-63 被引 8    
18.  Leonard F. Robust nonlinear controls of model-scale helicopters under lateral and vertical wind gusts. IEEE Transactions on Control Systems Technology,2012,20(1):154-163 被引 14    
19.  Cabecinhas D. A globally stabilizing path following controller for rotorcraft with wind disturbance rejection. IEEE Transactions on Control Systems Technology,2015,23(2):708-714 被引 10    
20.  Lee T. Control of complex maneuvers for a quadrotor UAV using geometric methods on SE(3),2010 被引 1    
引证文献 6

1 张雪涛 基于误差状态卡尔曼滤波估计的旋翼无人机输入饱和控制 机器人,2020,42(4):394-405
被引 4

2 顾凌枫 无人机集群系统弹性研究 系统工程与电子技术,2021,43(1):156-162
被引 5

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号