帮助 关于我们

返回检索结果

基于腔衰荡光谱技术(CRDS)对大气总活性氮氧化物(NO_y)的实时测量
Real-Time Measurement of NO_y(Total Reactive Nitrogen Oxide)by Cavity Ring Down Spectrometer(CRDS)

查看参考文献26篇

吴盛阳 1,2   胡仁志 1,2 *   谢品华 1,2   李治艳 1,2   刘小燕 3   林川 1,4   陈浩 1,2   王凤阳 1,2   王怡慧 1,5   靳华伟 1,2  
文摘 氮氧化物是大气中一种重要的痕量气体,影响大气的氧化性,危害人和动物的生理健康、导致光化学烟雾、灰霾、酸沉降等环境问题。近年来随着我国经济的迅速发展,能源消耗量的不断增加,氮氧化物的排放量居高不下,因此研究氮氧化物在大气中的含量及其化学性质具有非常重要的意义。氮氧化物(NO_x)的探测方式非常多样,但总活性氮氧化物(NO_y)的测量方式一直以来以催化转化化学发光法(CL)为主,本文介绍了一种热解双通道腔衰荡光谱技术(TD-CRDS)同步测量大气中NO_2和NO_y浓度的方法。优化了热解装置的性妮,确定了NO_2的有效吸收截面,分析了系统可能存在的干扰(H_2O、乙二醛、NH_3、N_2O等),探讨了系统的探测限(NO_2腔:8.72×10~8 molecules·cm~(-3);NO_y腔:9.71×10~8 molecules·cm~(-3))及误差(NO_2的测量误差:5%,NO_y的测量误差:12%)。另外,为了验证系统的性能,将CRDS与长光程差分吸收光谱(LP-DOAS)同步测量了环境气体NO_2浓度,相关性系数r为0.960;与Model 42i-NO_y分析仪开展环境大气NO_y的对比测量,相关性系数r为0.968,均具有较好的一致性。在合肥科学岛综合楼顶楼开展了为期一周的外场观测,测量期间NO_2和NO_y的平均浓度分别为0.411×10~(12)和0.773×10~(12) molecules·cm~(-3),通过平均日变化图发现NO_2与NO_y浓度具有相似的变化趋势,一般于10:00开始下降,15:00达到最低值。 CRDS技术因其高灵敏度、高时间分辨率已成为一种新型简便地测量环境大气中总活性氮氧化物的方法。
其他语种文摘 Nitrogen oxide,being one of an important trace gas in the atmosphere,may affect the oxidation of the atmosphere, harm the physiological health of the human beings and the animals,and cause photochemical smog,haze,acid depositions and other environmental problems.In recent years,with the rapid development of the economy and the continuous increase of energy consumption in our country,the nitrogen oxide emissions have been remaining at a high level.Therefore,it is of great significance to study the content and chemical properties of the nitrogen oxides in the atmosphere.The methods for determining NO_x has tended to become diversified.However,the methods for determining the total reactive nitrogen oxide(NO_y)have always been dominated by the catalytic conversion chemiluminescence(CL).In this paper,a method of simultaneous measurement of NO_2and NO_yconcentration in the ambient air by the thermal dissociation cavity ring down spectrometer(TD-CRDS)is introduced. The performance of the pyrolysis device was optimized,the effective absorption cross section of NO_2was determined,the interferences which may possibly exist in the system(H_2O,glyoxal,NH_3,N_2O and etc.)was analyzed,and the detection limit (NO_2chamber:8.72×10~8 molecules·cm~(-3);NO_ychamber:9.71×10~8 molecules·cm~(-3))and the errors(NO_2 measurement: 5%;NO_y measurement:12%)were discussed.In order to verify the performance of the system,the concentration of NO_2was determined by comparing the CRDS and the long-path differential optical absorption spectroscopy(LP-DOAS)synchronously, with a linear correlation factor r=0.960.The concentration of NO_yin the atmosphere was determined through comparing with the model Model 42i-NO_yanalyzer synchronously,with a linear correlation factor r=0.968.Both consistencies is good.A field experiment was performed for a week at Hefei Science Island.During the measurement,the average concentrations of NO_2and NO_y were 4.11×10~(12) molecules·cm~(-3) and 7.73×10~(12) molecules·cm~(-3),respectively.According to the average daily variation diagram,it is found that there is a similar trend in the concentration of NO_2and NO_y,and it usually starts to decline at 10:00 and the lowest value occurs at 15:00.Because of its high sensitivity and high time resolution,the CRDS has become a new and simple method for determining the total reactive nitrogen oxide in the ambient air.
来源 光谱学与光谱分析 ,2020,40(6):1661-1667 【核心库】
DOI 10.3964/j.issn.1000-0593(2020)06-1661-07
关键词 腔衰荡光谱 ; 热解 ; NO_2 ; NO_y ; 催化转化化学发光法
地址

1. 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽, 合肥, 230031  

2. 中国科学技术大学科学岛分院, 安徽, 合肥, 230026  

3. 安徽医科大学药学院, 安徽, 合肥, 230032  

4. 安徽大学物质科学与信息技术研究院, 安徽, 合肥, 230601  

5. 中国科学技术大学环境科学与光电技术学院, 安徽, 合肥, 230026

语种 中文
文献类型 研究性论文
ISSN 1000-0593
学科 物理学
基金 国家自然科学基金项目 ;  国家重点研发计划项目
文献收藏号 CSCD:6738804

参考文献 共 26 共2页

1.  Wild R J. Environmental Science & Technology,2014,48(16):9609 被引 3    
2.  Volkamer R. Atmospheric Measurement Techniques Discussions,2015,8(5):2121 被引 1    
3.  Dong L. Optics Express,2016,24(6):A528 被引 24    
4.  Brent L C. Journal of Atmospheric Chemistry,2015,72(3/4):1 被引 1    
5.  胡仁志. 物理学报,2016,36(2):312 被引 1    
6.  Wu T. Applied Physics B:Lasers and Optics,2009,94(1):85 被引 18    
7.  D'Ottone L. Journal of Physical Chemistry A,2015,105(46):10538 被引 1    
8.  吴方堃. 不同原理分析仪观测大气中氮氧化物对比研究. 环境工程学报,2010,4(4):865 被引 5    
9.  Yuba A. Analytical Chemistry,2010,82(21):8916 被引 1    
10.  Fahey D W. Journal of Atmospheric Chemistry,1985,3(4):435 被引 4    
11.  Lange L. Review of Scientific Instruments,2002,73(8):3051 被引 1    
12.  Volz-Thomas A. Atmospheric Chemistry and Physics,2005,5:583 被引 1    
13.  Sun Y. Science of the Total Environment,2011,409(5):933 被引 14    
14.  Stratmann G. Atmospheric Environment,2016,133:93 被引 2    
15.  Fuchs H. Environmental Science & Technology,2009,43(20):7831 被引 9    
16.  Dube W P. Review of Scientific Instruments,2006,77(3):289 被引 1    
17.  Wooldridge P J. Atmospheric Measurement Techniques,2010,3:593 被引 4    
18.  Di Carlo P. Atmospheric Measurement Techniques,2013,6:971 被引 2    
19.  Perez I M. Atmospheric Environment,2007,41(19):3993 被引 6    
20.  Thaler R D. Analytical Chemistry,2011,83(7):2761 被引 3    
引证文献 3

1 刘文清 高灵敏腔衰荡光谱技术及其应用研究 光学学报,2021,41(1):0130003
被引 0 次

2 王怡慧 大气HO_x自由基湍流标定系统研究 光谱学与光谱分析,2021,41(8):2384-2390
被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号