帮助 关于我们

返回检索结果

基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测
PREDICTION OF SHEAR TRANSFORMATION ZONES IN METALLIC GLASSES BASED ON LAPLACIAN OF ATOMIC VOLUME

查看参考文献49篇

史荣豪 1,2   肖攀 1   杨荣 1  
文摘 剪切转变区(shear transformation zone, STZ)作为金属玻璃塑性事件的一个基本特征单元,已被研究者们逐渐接受,但STZ产生的机制和来源仍具争议.本文采用分子模拟方法对Cu_(64)Zr_(36)金属玻璃在受简单剪切加载时的变形行为展开了研究.结果表明,体系的初始构型与加载后STZ的产生是相关的.虽然原子体积场及其梯度可以用来有效表征金属玻璃中局部原子构型的非均匀性,但它们与STZ产生的区域没有直接明显的对应关系.基于此,提出一个新的局域结构参数ξ来用于金属玻璃中STZ产生区域的预测,它由两部分构成:原子体积场的拉普拉斯算子和体积场梯度分量的绝对差值.原子体积场的拉普拉斯算子为负且绝对值较大时,体积场梯度向量呈现向内指的分布特征,代表体系中的局域软区;而体积场梯度分量的绝对差值则用于遴选体积场梯度不同的分布模式.进一步地,建立了该结构参数与非仿射位移和剪切局部化三者关系,发现特定的体积场梯度向量分布模式,将导致局部剪切增强的非仿射位移场,从而更容易诱发STZ的形成.相关性分析表明,该参数与STZ区域平均相关性高于78%,因此,该参数能有效用于金属玻璃剪切转变区的预测,且运用拉普拉斯算子的思想有望应用于金属玻璃力学行为的理论分析.
其他语种文摘 Shear transformation zone (STZ), as a basic characteristic unit of plastic events in metallic glasses (MGs), has been widely accepted by researchers, but the source of its origin and activation mechanism are still controversial. Deformation behaviours of Cu_(64)Zr_(36) MGs under simple shear loadings are investigated using molecular simulation method in this paper. The results indicate that the activation locations of STZ are related to the initial configuration of MGs. Though the field of atomic volume and its gradient are a direct representation of the local atomic structural heterogeneity of MGs, they lack an obvious correlation to the regions of STZ activation. A new local structural parameter ξ is proposed in this paper based on the initial configuration of MG to predict the potential regions of STZ. ξ is the product of two factors: the Laplacian of atomic volume field (AVF) and the absolute difference between components of the gradient of AVF. Vectors of the AVF gradient present a distribution pattern of pointing inside if the Laplacian of AVF is negatively large, representing the localized soft regions in MGs. The absolute difference of AVF gradient components is used to select different patterns of the AVF gradient distribution. Furthermore, the relationship among structural parameter ξ, nonaffine displacement and shear localization is established, revealing that only certain patterns of AVF gradient distribution would lead to nonaffine displacements field strengthening shear localization, which is more likely to result in activation of STZs. The correlation analysis shows that the averaged spatial correlation index of ξ and STZ is larger than 78%, so ξ can be used as an effective parameter for predicting the activation regions of STZs in MGs. Moreover, the ideology of using Laplacian of local AVF in predicting potential STZ regions in MGs would bridge the analysis between atomic simulations of MGs, the mechanism of STZ activations and the traditional mechanical theory.
来源 力学学报 ,2020,52(2):369-378 【核心库】
DOI 10.6052/0459-1879-19-369
关键词 金属玻璃 ; 剪切转变区 ; 非仿射位移 ; 原子体积 ; 分子模拟
地址

1. 中国科学院力学研究所, 北京, 100190  

2. 中国科学院大学工程科学学院, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 力学
基金 国家自然科学基金 ;  中国科学院战略性先导科技专项
文献收藏号 CSCD:6729722

参考文献 共 49 共3页

1.  孙奕韬. 非晶材料与物理近期研究进展. 物理学报,2018,67:126101 被引 3    
2.  Wang Z. Flow units as dynamic defects in metallic glassy materials. National Science Review,2019,6:304-323 被引 15    
3.  Wang N. Spatial correlation of elastic heterogeneity tunes the deformation behavior of metallic glasses. NPJ Computational Materials,2018,4:19 被引 7    
4.  Zhu F. Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses. Nature Communications,2018,9:3965 被引 15    
5.  Qiao J C. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science,2019,104:250-329 被引 67    
6.  Taylor G I. The Mechanism of plastic deformation of crystals. Part I. Theoretical. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,1934,145:362-387 被引 53    
7.  Bernal J D. A geometrical approach to the structure of liquids. Nature,1959,183:141-147 被引 43    
8.  Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica,1977,25:407-415 被引 215    
9.  汪卫华. 非晶态物质的本质和特性. 物理进展,2013,33:177-351 被引 159    
10.  Argon A S. Plastic deformation in metallic glasses. Acta Metallurgica,1979,27:47-58 被引 150    
11.  Schall P. Structural rearrangements that govern flow in colloidal glasses. Science,2007,318:1895-1899 被引 17    
12.  Sun B A. The fracture of bulk metallic glasses. Progress in Materials Science,2015,74:211-307 被引 56    
13.  Maloney C E. Amorphous systems in athermal, quasistatic shear. Physical Review E,2006,74:016118 被引 6    
14.  Hu Y C. Pressure effects on structure and dynamics of metallic glass-forming liquid. The Journal of Chemical Physics,2017,146:024507 被引 1    
15.  Wu Y C. The critical strain-A crossover from stochastic activation to percolation of flow units during stress relaxation in metallic glass. Scripta Materialia,2017,134:75-79 被引 8    
16.  Tian Z L. Strain gradient drives shear banding in metallic glasses. Physical Review B,2017,96:094103 被引 6    
17.  Wei D. Assessing the utility of structure in amorphous materials. The Journal of Chemical Physics,2019,150:114502 被引 5    
18.  Hu Y C. Impact of spatial dimension on structural ordering in metallic glass. Physical Review E,2017,96:022613 被引 1    
19.  李茂枝. 非晶合金及合金液体的局域五次对称性. 物理学报,2017,66:176107 被引 5    
20.  Zhang Q. Structural characteristics in deformation mechanism transformation in nanoscale metallic glasses. Journal of Physics: Condensed Matter,2019,31:455401 被引 1    
引证文献 2

1 陈迎红 La_(30)Ce_(30)Al_(15)Co_(25)金属玻璃应力松弛行为 力学学报,2020,52(3):740-748
被引 4

2 张浪渟 铜基非晶合金热效应和剪切模量变化起源 力学学报,2020,52(6):1709-1718
被引 2

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号