帮助 关于我们

返回检索结果

非晶态固体的结构可以决定性能吗?
DOES STRUCTURE DETERMINE PROPERTY IN AMORPHOUS SOLIDS?

查看参考文献106篇

王云江 1,2   魏丹 1,2   韩懂 1,2   杨杰 1,2   蒋敏强 1,2   戴兰宏 1,2  
文摘 晶态固体的力学性能与塑性变形主要由结构缺陷,比如位错的运动决定.而在非晶态固体中结构如何决定性能,仍然是固体力学、材料学和凝聚态物理学共同关心但尚未解决的核心问题之一.传统材料学研究的经典范式为“结构决定性能”.遵循这一信条,已经有大量的实验表征与理论、模拟研究,尝试将非晶态固体的某种结构特征与性能建立一一对应关系.但是,科学界对于非晶固体结构–性能关系成立与否,以及背后隐藏的规律知之甚少.本文针对非晶态固体的变形机制以及其微结构特征,基于分子动力学模拟,定量评估短程简单结构与中长程复杂结构在决定非晶态固体动力学性能方面的效用.通过海量抽样每种具体玻璃结构的激活能(标识激发难易程度),尝试将结构参数与激活能建立定量关系,从而揭示出非晶态固体结构–性能关系的隐藏主控因素为结构的空间关联,受限比几何结构本身更关键.只有某种结构在空间上呈现亚纳米级的空间关联长度,这种完备结构才有可能有效地决定非晶态固体的力学性能,而短程简单结构则无效.进一步,给出了评价非晶态固体结构预测性能有效性的普适定量方法,为建立广义无序物质的结构–性能关系提供了筛选准则.
其他语种文摘 The mechanical properties and plastic deformation mechanisms of crystalline solids are mainly determined by their structural defects, e.g., the motion of the versatile dislocations. However, how structures determine properties in non-crystalline solids remains as a major unsolved issue in both solid mechanics, materials sciences, as well as condensed matter physics. Structure determines property is the traditional paradigm of materials science. Following this rule, there are vast experimental characterizations, theoretical studies, and computer simulations appeared in the literature, trying to establish a one-to-one correspondence between a specific structural feature with a unique dynamic property in the general amorphous solids. However, up to date, people gain very little understanding of the structure-property relationships in amorphous solids, not to mention whether there exists any hidden rule behind the structure-property relationships. For this purpose, we focus on the unique features of deformations mechanisms in amorphous solids as well as their microstructure characteristics. Thorough proper samplings of the activation energies of the excitation of these structural parameters by an advanced molecular dynamics technique, we are trying to quantitatively assess the validity of simple short-range structures and medium- to long-range structures in determination of their properties. This is done by examination of the possible correlation between parameters of structures with their activation energies, which implies the level of difficulty in activation of the events. By this we find that the hidden governing rule of structure-property relationship in amorphous solids involves a critical role of spatial autocorrelation length of the specific structural parameter. Constraint is more relevant than geometry itself. If only one structural descriptor presents spatial autocorrelation length up to sub nanometer level, it might effectively predict the mechanical property of amorphous solids; otherwise, the short-range local structures lacking such correlation length fails to predict property. Furthermore, we present a general metric to assess the utilities of structures in determining functions of the amorphous solids, which can be served as a screening rule to seeking for effective structures in amorphous solids.
来源 力学学报 ,2020,52(2):303-317 【核心库】
DOI 10.6052/0459-1879-19-368
关键词 非晶态固体 ; 结构–性能关系 ; 激活能 ; 玻璃结构
地址

1. 中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190  

2. 中国科学院大学工程科学学院, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 力学
基金 国家自然科学基金 ;  国家重点研发计划 ;  中国科学院青年创新促进会项目
文献收藏号 CSCD:6729718

参考文献 共 106 共6页

1.  Wei D. Assessing the utility of structure in amorphous materials. J Chem Phys,2019,150:114502 被引 5    
2.  Cai W. Imperfections in Crystalline Solids,2016 被引 4    
3.  Kocks U F. Thermodynamics and kinetics of slip. Prog Mater Sci,1975,19:1-278 被引 25    
4.  Argon A. Strengthening Mechanisms in Crystal Plasticity. vol. 4,2008 被引 1    
5.  Caillard D. Thermally Activated Mechanisms in Crystal Plasticity. vol. 8,2003 被引 1    
6.  Frenkel J. Zur Theorie der Elastizitatsgrenze und der Festigkeit kristallinischer Korper. Zeitschrift Fur Phys,1926,37:572-609 被引 10    
7.  Qiao J C. Structural heterogeneities and mechanical behavior of amorphous alloys. Prog Mater Sci,2019,104:250-329 被引 67    
8.  Schuh C A. Mechanical behavior of amorphous alloys. Acta Mater,2007,55:4067-4109 被引 235    
9.  Hufnagel T C. Deformation of metallic glasses: Recent developments in theory, simulations, and experiments. Acta Mater,2016,109:375-393 被引 29    
10.  Nicolas A. Deformation and flow of amorphous solids: a review of mesoscale elastoplastic models. Rev Mod Phys,2018,90:045006 被引 5    
11.  Cheng Y Q. Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci,2010,56:379-473 被引 2    
12.  Cheng Y Q. Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett,2009,102:245501 被引 40    
13.  Cheng Y Q. Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history. Acta Mater,2008,56:5263-5275 被引 14    
14.  Cheng Y Q. Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys Rev B,2008,78:14207 被引 1    
15.  Sheng H W. Atomic packing and shortto-medium-range order in metallic glasses. Nature,2006,439:419-425 被引 119    
16.  Zhu F. Correlation between local structure order and spatial heterogeneity in a metallic glass. Phys Rev Lett,2017,119:215501 被引 14    
17.  Hirata A. Direct observation of local atomic order in a metallic glass. Nat Mater,2011,10:28-33 被引 32    
18.  Liu X J. Metallic liquids and glasses: Atomic order and global packing. Phys Rev Lett,2010,105:155501 被引 20    
19.  Liu X J. Local structural mechanism for frozen-in dynamics in metallic glasses. Phys Rev B,2018,97:134107 被引 3    
20.  Han D. Atomistic structural mechanism for the glass transition: Entropic contribution. Phys Rev B,2020,101:014113 被引 3    
引证文献 12

1 郝奇 锆基非晶合金的动态弛豫机制和高温流变行为 力学学报,2020,52(2):360-368
被引 9

2 陈迎红 La_(30)Ce_(30)Al_(15)Co_(25)金属玻璃应力松弛行为 力学学报,2020,52(3):740-748
被引 4

显示所有12篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号