帮助 关于我们

返回检索结果

热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为
Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation

查看参考文献32篇

陈文雄 1,2   胡宝佳 1,2   贾春妮 1,2   郑成武 1,2 *   李殿中 1,2  
文摘 利用Gleeble热力模拟、EBSD和TEM等方法,研究了Ni-30%Fe合金热变形后奥氏体的亚动态软化行为,分析了微观亚结构演化对奥氏体亚动态软化机制的影响。结果表明,亚结构恢复和亚动态再结晶是奥氏体亚动态软化的2种主要机制。当奥氏体内发生部分动态再结晶时,再结晶晶粒与变形基体间的储能差较大,热变形后保温过程的软化首先是通过亚动态再结晶进行;同时,变形基体内亚结构的恢复会逐渐降低变形基体内的形变储能,使晶界迁移速率降低而抑制亚动态再结晶的继续进行。而当奥氏体内动态再结晶发生完全时,在热变形后的保温过程中,再结晶晶粒内部因持续变形而形成的小角度亚结构会通过快速恢复而大量分解,形成不均匀的高密度位错会促进大角度晶界的局部迁移,从而促进晶粒的粗化,加速材料软化。
其他语种文摘 Multi-pass processing is commonly used in hot working of steels. Dynamic recrystallization (DRX) occurs during hot deformation, while post-dynamic softening takes place during the inter-pass times and post-deformation annealing. Three different mechanisms are believed to be responsible for the post-dynamic softening stage. These are static recovery (SRV), static recrystallization (SRX), and postdynamic recrystallization (P-DRX). Each of these mechanisms can change the microstructure of austenite (i.e. grain size and distribution). As a result, the post-dynamic softening behavior of austenite may play an important role in the microstructures and the final mechanical properties of the steel product. In this work, a Ni-30%Fe model alloy is used to study softening of austenite in post-deformation annealing after the hot deformation at 900 °C and strain rate 0.001 s-1. The microstructures in the annealed samples are carefully analyzed by EBSD in conjunction with TEM. The results show that P-DRX and sub-structural restoration are believed to be responsible for softening of the material after hot deformations. The P-DRX generally consumes deformed structures by the growth of the preformed nuclei of dynamic recrystallization. The sub-structural restoration in austenite usually takes place through the dislocation climb, leading to sub-boundary disintegrations and dislocation annihilations. When the sample is deformed to the peak strain, the deformation microstructure is composed of both recrystallized grains and deformed matrix. The large gradient of stored energy between the recrystallized grains and deformed matrix effectively promotes the strain-induced migration of the large-angle grain boundaries, which makes the P-DRX become the predominated post-dynamic softening mechanism during the post-deformation annealing. Meanwhile, the sub-boundaries within the deformed matrix gradually disintegrate through the restoration mechanism, which also contributes to the post-dynamic softening of austenite. On the other hand, the dislocation annihilation can result in a reduction of the stored energy within the deformation matrix, which inhibits the further migration of grain boundaries. In contrast, when the sample is deformed to the steady-state stage of the dynamic recrystallization, a fully recrystallized microstructure is obtained. The sub-structural restoration process of the fully recrystallized microstructure is much faster than that in the deformed matrix during the post-deformation annealing. It makes the sub-structural restoration become the predominated post-dynamic softening mechanism of this alloy in the steady-state condition. Furthermore, the disintegration of large numbers of sub-boundaries leads to an increase of the dislocation density in local region around the grain boundaries, which facilitates local migration of the high-angle grain boundaries and accelerates the softening of the material.
来源 金属学报 ,2020,56(6):874-884 【核心库】
DOI 10.11900/0412.1961.2019.00310
关键词 Ni-30%Fe模型合金 ; 热变形 ; 亚结构恢复 ; 亚动态再结晶 ; 奥氏体
地址

1. 中国科学院金属研究所, 沈阳材料科学国家研究中心, 沈阳, 110016  

2. 中国科学技术大学材料科学与工程学院, 沈阳, 110016

语种 中文
文献类型 研究性论文
ISSN 0412-1961
学科 金属学与金属工艺
基金 国家自然科学基金项目
文献收藏号 CSCD:6729613

参考文献 共 32 共2页

1.  Sakai T. Dynamic and postdynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci,2014,60:130 被引 172    
2.  Tikhonova M. Microstructure and mechanical properties of austenitic stainless steels after dynamic and post-dynamic recrystallization treatment. Adv. Eng. Mater,2018,20:1700960 被引 2    
3.  Humphreys J. Recrystallization and Related Annealing Phenomena. 3rd Ed,2017:1 被引 1    
4.  Huang K. A review of dynamic recrystallization phenomena in metallic materials. Mater. Des,2016,111:548 被引 130    
5.  Jiang H. A study on the effect of strain rate on the dynamic recrystallization mechanism of alloy 617B. Metall. Mater. Trans. A,2016,47:5071 被引 10    
6.  Chen W X. Evolution of twins and subboundaries at the early stage of dynamic recrystallization in a Ni-30%Fe austenitic model alloy. Mater. Sci. Eng. A,2018,733:419 被引 3    
7.  Cao Y. Grain boundary character distribution during the post-deformation recrystallization of Incoloy 800H at elevated temperature. Mater. Lett,2016,163:24 被引 2    
8.  Dehghan-Manshadi A. Hot deformation and recrystallization of austenitic stainless steel: Part II. Postdeformation recrystallization. Metall. Mater. Trans. A,2008,39:1371 被引 4    
9.  Morgridge A R. Metadynamic recrystallization in C steels. Bull. Mater. Sci,2002,25:291 被引 2    
10.  Beladi H. New insight into the mechanism of metadynamic softening in austenite. Acta Mater,2011,59:1482 被引 3    
11.  Taylor A S. Comparison of 304 stainless steel and Ni-30 wt.% Fe as potential model alloys to study the behaviour of austenite during thermomechanical processing. Acta Mater,2011,59:5832 被引 1    
12.  Kugler G. Modeling the dynamic recrystallization under multi-stage hot deformation. Acta Mater,2004,52:4659 被引 44    
13.  Cho S H. The dynamic, static and metadynamic recrystallization of a Nb-microalloyed steel. ISIJ Int,2008,41:63 被引 1    
14.  Sun W P. Comparison between static and metadynamic recrystallization-An application to the hot rolling of steels. ISIJ Int,1997,37:1000 被引 51    
15.  Hurley P J. The production of ultrafine ferrite during hot torsion testing of a 0.11 wt pct C steel. Metall. Mater. Trans. A,2002,33:2985 被引 3    
16.  Suh D W. Serration of grain boundary in Ni-30Fe alloy through high temperature deformation. ISIJ Int,2002,42:1026 被引 2    
17.  Charnock W. The effect of carbon and nickel upon the stacking-fault energy of iron. Met. Sci. J,1967,1:123 被引 3    
18.  Li L F. Dynamic recrystallization of ferrite with particle-stimulated nucleation in a low-carbon steel. Metall. Mater. Trans. A,2013,44:2060 被引 2    
19.  Roucoules C. Softening and microstructural change following the dynamic recrystallization of austenite. Metall. Mater. Trans. A,1994,25:389 被引 7    
20.  曹宇. 800H合金动态再结晶行为研究. 金属学报,2012,48:1175 被引 22    
引证文献 1

1 王永善 热作模具钢5CrNiMoV的亚动态再结晶行为研究 塑性工程学报,2021,28(3):118-125
被引 3

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号