帮助 关于我们

返回检索结果

原子层沉积微通道板的研究进展
Research Progress of Atomic Layer Deposited Micro-channel Plate

查看参考文献62篇

郭俊江 1,2,3   朱香平 1,2   许彦涛 1,2   曹伟伟 1,2,3   邹永星 1   陆敏 1   彭波 1   司金海 3   郭海涛 1  
文摘 微通道板(MCP)是光通讯和光电子技术领域实现电子倍增和信号放大的核心器件,其性能提升主要包括提高增益、延长寿命和降低暗计数。目前国内外普遍使用的商品化微通道板仍是基于传统铅硅酸盐玻璃经氢还原工艺制备的。尽管经过四代玻璃组分和制备工艺优化,MCP增益可达103,寿命为0.3 C/cm~2,暗计数为0.25 events /(s·cm~2),但由于玻璃组分和复杂制备工艺的限制,其离子反馈、背景噪声很难进一步降低,增益也无法大幅提升。鉴于此,近10年来科研人员提出并完善了新的解决方案---利用原子层沉积(ALD)技术,在硼硅酸盐玻璃基板孔内制备导电层和二次电子发射层等功能层,从而获得具有导电和电子倍增能力的微通道板。这种新型原子层沉积微通道板(ALD-MCP)有效避免了基板玻璃材料对其性能优化的制约,实现了基板材料和功能材料的独立设计,能够显著提高微通道板的综合性能。经过一系列尝试,国际上已开发出性能远优于传统MCP的ALD功能层:以Al_2O_3 /ZnO、Al_2O_3 /W或Al_2O_3 /Mo为导电层,MgO或Al_2O_3为二次电子发射层的ALD-MCP增益已达104,暗计数降低至0.078 events /(s·cm~2),寿命提升至7 C/cm~2,但是其性能稳定性仍有待进一步提高。此外,还需要在提高沉积效率、优化调控功能层性能等方面进一步深入研究。本文从功能层的组成和微通道板的性能两方面归纳、梳理了利用原子层沉积技术制备微通道板的国内外研究情况,并总结了目前研究中存在的不足,展望了未来发展趋势。
其他语种文摘 The micro-channel plate(MCP) is the core device for electronic multiplication and signal amplification in the fields of optical communication and optoelectronic technology,and the performance improvement research of MCP is mainly focused on increasing gain,extending service life and reducing dark count. Currently,the commonly used commercial MCPs are still prepared based on the traditional lead silicate glass via hydrogen reduction process. Although its gain,lifetime and dark count can reach 103,0.3 C/cm~2,0.25 events /(s·cm~2),respectively,optimized by four generations of glass components and preparation process,the glass composition and complicated preparation process limit its further enhancement in performance,e.g. lower ion feedback and background noise,and higher gain. In view of this,researchers have proposed and perfected a new solution over the past decade: adopting atomic layer deposition(ALD) technology to deposit functional layers,including the conductive layers and secondary electron emission layers onto the surface of borosilicate glass substrates. Thereby,an MCP with conduction and electron multiplication capability is obtained. This novel ALD-MCP can effectively avoid the restriction of substrate glass on its performance optimization,realize the independent design of the substrate glass and the functional layer's materials,and significantly improve the comprehensive performance of the MCP. Through continuous attempts,the ALD functional layers exhibiting much superior performance to that of traditional MCP have been developed. The prevailing deposition materials for conductive layer are Al_2O_3 /ZnO,Al_2O_3 /W or Al_2O_3 /Mo,and for the secondary electron emission layers are MgO or Al_2O_3,with the products' gain elevated to 104,dark count reduced to 0.078 events /(s·cm~2),and lifetime prolonged to 7 C/cm~2. However,its stability still requires further improvement. In addition,deeper investigations are needed to improve deposition efficiency,and to optimize and regulate the performance of functional layers. This paper provides a systematic summary over the worldwide research status of ALD-MCP from the perspectives of functional layer composition and product performance. Moreover,it also gives a critical discussion involving the problems in current research and a prospective outlook for future development trends.
来源 材料导报 ,2020,34(2A):03080-03089 【核心库】
DOI 10.11896/cldb.18110031
关键词 微通道板 ; 原子层沉积 ; 功能层 ; 增益 ; 寿命
地址

1. 中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安, 710119  

2. 中国科学院大学, 北京, 100049  

3. 西安交通大学电子与信息工程学院, 西安, 710049

语种 中文
文献类型 综述型
ISSN 1005-023X
学科 物理学
基金 国家重点研发计划
文献收藏号 CSCD:6710151

参考文献 共 62 共4页

1.  潘京生. 应用光学,2003,25(5):5 被引 1    
2.  黄敏. 光电子技术,1994,14(2):51 被引 1    
3.  杨玉勤. 现代兵器,1986(4):50 被引 1    
4.  Fraser G W. Society of Photo-Optical Instrumentation Engineers,1988,982:98 被引 1    
5.  Bruce L. Society of Photo-Optical Instrumentation Engineers,1996,2808:72 被引 1    
6.  Matsuoka K. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2014,766:148 被引 3    
7.  刘术林. 应用光学,2003(8):61 被引 2    
8.  Suntola T. USA Patent,EP4058430,1977 被引 2    
9.  Suntola T. Thin Solid Films,1992,216(1):84 被引 13    
10.  Suntola T. USA Patent,EP4413022,1983 被引 1    
11.  Horton J R. USA Patent,EP5205902,1993 被引 1    
12.  Goodman C H L. Journal of Applied Physics,1986,60(3):R65 被引 6    
13.  George S M. Journal of Physical Chemistry,1996,100:13121 被引 14    
14.  吴宜勇. 电子工业专用设备,2005,34(6):6 被引 8    
15.  Tuomo Suntola. USA Patent,EP4058430,1977 被引 2    
16.  George S M. Chemical Reviews,2010,110:111 被引 135    
17.  Foroughi-Abari A. Nanofabrication Techniques and Principles,2012 被引 1    
18.  Niinistij L. Thin Solid Films,1993,225(1/2):130 被引 1    
19.  Leskela M. Angewandte Chemie International Edition,2003,42(45):5548 被引 33    
20.  Marichy C. Advanced Materials,2012,24(8):1017 被引 25    
引证文献 1

1 高恒蛟 原子层沉积技术原理及在航天领域的应用现状 真空科学与技术学报,2022,42(4):237-243
被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号