帮助 关于我们

返回检索结果

坡度对碎屑流冲击立式拦挡墙力学特征的影响
Influence of slope angle on mechanical properties of dry granular flow impacting vertical retaining wall

查看参考文献33篇

肖思友 1,2,3   苏立君 1,2,3   姜元俊 1,2,3 *   李丞 1,2,3   刘振宇 1,2,3  
文摘 由坡度和挡墙倾角的改变造成碎屑流冲击力学模型的改变是目前被忽略的问题。在碎屑流冲击倾式拦挡墙物理试验的基础上,利用离散元数值计算方法研究了坡度对碎屑流冲击立式拦挡墙(墙面与地面的夹角为90°)力学特征的影响,依据死区颗粒堆积特征,流动层颗粒冲击特征以及二者的相互作用特征提出了两种新力学模型:由倾斜冲击挡墙向坡面堆积转变的力学模型和考虑流动层对死区冲切摩擦作用的水平直接冲击力学模型。对不同冲击力学模型进行了验证分析,结果表明:坡度和挡墙倾角改变了死区的堆积特征从而改变了流动层的冲击方向和冲击力大小。当坡度小于40°时,碎屑流流动层首先沿死区上覆面倾斜冲击挡墙,在最大冲击力作用时刻,流动在坡面层状堆积,最大法向冲击合力可按静土压力公式估算。随着坡度的增大,在最大冲击力时刻,流动层颗粒直接冲击挡墙,但由于死区颗粒对流动层颗粒具有摩擦缓冲减速作用,大幅降低了流动层对挡墙的直接冲击力。此时死区对挡墙的作用力主要包括3个部分:流动层沿坡面冲击死区,由死区传递至挡墙的冲击力、流动层对死区的冲切摩擦力以及死区自重的静土压力。死区对挡墙作用力占最大法向冲击合力的比例增大至90%左右。当坡度由40°增大到50°时,在最大法向冲击合力作用时刻,流动层对死区的冲切摩擦力占最大冲击力的比例由15%增大到49%,流动层与死区之间的摩擦系数由滚动摩擦系数转变为静摩擦系数。提出的流动层对死区的冲切摩擦力为碎屑流冲击刚性挡墙力学计算模型提供了新的研究思路。
其他语种文摘 The impact mechanical model changes of granular flow caused by the changes in slope angle and rigid wall slope are neglected problem presently.The discrete element method (DEM) is utilized to investigate the influences of slope angles on the impact properties of dry granular flow impacting on the rigid wall,which is based on the laboratory experiment of granular flow impacting on low-angle retaining wall.Two impact mechanical models are proposed according to the accumulation characteristics of dead zone,the impact characteristics of flowing layer and their interaction characteristics.The results show that the slope and the angle of the retaining wall change the accumulation characteristics of the dead zone and change the impact direction and impact force of the flowing layer.The maximum normal impact resultant force (NIRF) can be estimated by the formula of static earth pressure when the slope is less than 40 degrees,since the flow layer impact the retaining wall indirectly at the moment of maximum impact force.With the increasing of slope,the kinetic energy of the flowing layer increases.At the moment of the maximum normal impact force,the flowing layer impacts the retaining wall directly.However,the dead zone has the buffer and deceleration effects on the flowing layer.This leads to decrease of direct impact force on the retaining wall.The load of dead zone on retaining wall mainly includes the direct impact force of the flowing layer on the dead zone along the slope,the shear friction force of the flowing layer on the dead zone and the static earth pressure of dead zone.The ratio of impact force of the dead zone on the retaining wall increases to 90% of the maximum NIRF.When the slope angles increase from 40 to 50 degrees,the ratio of shear friction force increases from 15% to 49% of the maximum NIRF.The friction coefficient between dead zone and flowing layer also changes from rolling friction coefficient to static friction coefficient.The shear friction force by the flowing layer onto the dead zone provides a new research idea for the estimating model of granular flow impacting on rigid retaining wall.
来源 岩土力学 ,2019,40(11):4341-4351,4360 【核心库】
DOI 10.16285/j.rsm.2018.1577
关键词 碎屑流 ; 拦挡墙 ; 冲击力 ; 离散元方法 ; 冲切摩擦
地址

1. 中国科学院成都山地灾害与环境研究所, 中国科学院山地灾害与地表过程重点实验室, 四川, 成都, 610041  

2. 中国科学院大学, 北京, 100049  

3. 中国科学院青藏高原地球科学卓越创新中心, 中国科学院青藏高原地球科学卓越创新中心, 北京, 100101

语种 中文
文献类型 研究性论文
ISSN 1000-7598
学科 建筑科学
基金 中国科学院“百人计划”项目 ;  中国科学院战略先导A项目 ;  中科院西部之光“一带一路”国际合作团队项目
文献收藏号 CSCD:6616167

参考文献 共 33 共2页

1.  李秀珍. 川藏交通廊道滑坡崩塌灾害对道路工程的危害方式分析. 工程地质学报,2017,25(5):1245-1251 被引 12    
2.  中国地质灾害防治工程行业协会. T/CAGHP 021-2018泥石流防治工程设计规范,2018 被引 1    
3.  Japan Road Association. Japanese rockfall protection measures handbook,2000 被引 2    
4.  Faug T. Macroscopic force experienced by extended objects in granular flows over a very broad Froudenumber range. The European Physical Journal E,2015,38(5):34-51 被引 4    
5.  Albaba A. Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modeling. Granular Matter,2015,17(5):603-616 被引 9    
6.  Koo R C H. Velocity attenuation of debris flows and a new momentum-based load model for rigid barriers. Landslides,2017,14(2):1-13 被引 5    
7.  Brighenti R. Debris flow hazard mitigation: a simplified analytical model for the design of flexible barriers. Computers & Geotechnics,2013,54(54):1-15 被引 12    
8.  Shen W G. Quantifying the impact of dry debris flow against a rigid barrier by DEM analyses. Engineering Geology,2018,214(26):86-96 被引 4    
9.  Geotechnical Engineering Office. Supplementary technical guidance on design of rigid debris-resisting barriers,2012 被引 1    
10.  Savage S B. The mechanics of rapid granular flows. Advances in Applied Mechanics,1984,24(87):289-366 被引 17    
11.  杜国梁. 都江堰市五里坡高位滑坡-碎屑流成因机制分析. 岩土力学,2016,37(增刊2):493-501 被引 6    
12.  Gao G. Modeling the impact of a falling rock cluster on rigid structures. International Journal of Geomechanics,2017,18(2):1-15 被引 3    
13.  Kou B. Granular materials flow like complex fluids. Nature,2017,551(11):361-363 被引 1    
14.  Bagnold R A. Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. Roy Soc. London A,1954 被引 1    
15.  Faug T. Depth-averaged analytic solutions for freesurface granular flows impacting rigid walls down inclines. Physical Review E Statistical Nonlinear & Soft Matter Physics,2015,92(6/1):062310 被引 4    
16.  Albaba A. Dry granular avalanche impact force on a rigid wall: analytic shock solution versus discrete element simulations. Physical Review E,2018,97(5/1):052903 被引 6    
17.  Jiang Y J. Experimental study of dry granular flow and impact behavior against a rigid retaining wall. Rock Mechanics and Rock Engineering,2013,46(4):713-729 被引 25    
18.  刘洋. 散粒介质临界状态细观力学结构特征的数值模拟与分析. 岩土力学,2018,36(6):2238-2247 被引 1    
19.  Wu F. Numerical simulation of dry granular flow impacting a rigid wall using the discrete element method. Plos One,2016,11(8):e0160756 被引 1    
20.  Edem Solution. User's manual, EDEM 2.7,2015 被引 3    
引证文献 3

1 郜颖超 基于流形元模型的高速远程滑坡碎屑流运动规律与拦挡结构减灾效果研究 工程科学与技术,2020,52(6):40-48
被引 1

2 张睿骁 场地条件对滑坡-碎屑流运动冲击特征的影响研究 振动与冲击,2022,41(2):229-239
被引 1

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号