帮助 关于我们

返回检索结果

高速列车车体长度对气动噪声影响的数值研究
INFLUENCE OF THE LENGTH OF HIGH-SPEED TRAIN ON THE FAR-FIELD AEROACOUSTICS CHARACTERISTICS

查看参考文献34篇

莫晃锐 1   安翼 1   刘青泉 2  
文摘 高速列车具有细长形状,数值评估气动噪声往往需要巨大的计算量.目前对高速列车气动噪声的数值模拟大多基于对简化短编组列车的评估,而实际列车通常具有较长的8~16节编组.如何基于现有条件合理评价真实长度列车的气动噪声,是一个急需探讨的问题.本文应用非线性声学求解器(NLAS)和FW–H声学比拟法的混合算法,先求解噪声积分面上的声场脉动,再进行远场积分,引入多噪声面积分技术,通过对三种不同长度(3节、4节、6节)列车模型的气动性能和噪声数值模拟,分析了车体长度对列车气动噪声的影响.结果表明,同一列车模型的各节车厢具有相似的沿线噪声分布,其噪声曲线在量值上十分接近,只是主峰位置会随着车厢空间位置的不同而相应地发生偏移;不同长度编组列车对应部位之间的远场噪声特性具有较强的关联性,它们的远场噪声具有接近的总声压级和噪声频谱.通过利用短编组计算数据进行分解、平移和叠加,成功重构了4编组和6编组列车远场噪声特性,与直接计算结果相比误差在可接受范围内.由此发展了基于短编组列车噪声的数值结果,重构长编组列车沿线噪声的近似评估方法.
其他语种文摘 The estimation of the aeroacoustic characteristics of the high-speed train is of great importance in train design. Due to the extreme slender shape of the full marshaling of the train (generally 8 or 16 cars), the calculation of the far filed acoustics involves massive consumption of the CPU time which even makes the optimization unpractical. This paper numerically studies the influence of train length on its aeroacoustics characteristics by considering the acoustic contribution car by car. The nonlinear acoustic solver (NLAS) is used to calculate the acoustic source at the acoustic surface, and the FW-H analogy method is used to integrate on the acoustic surface to obtain the far-field results. Three different marshaling of the trains, i.e. 3 cars, 4 cars, and 6 cars, are studied and compared. The far-field acoustic level and frequency profile along the train is obtained. The results show that for different middle cars, the far-field acoustic profile along the length is very similar in both quantity and shape, except the offset in position. For the cars in the same position of different marshaling, both the sound pressure level distribution and the frequency profile are also very close to each other. Thus the key aeroacoustics characteristics of a long marshaling train could be estimated with a much smaller marshaling such as 3 cars. With the superposition of the acoustic surface data from short marshaling simulation, the aeroacoustics characteristics of long marshaling could be obtained. The comparison of the superposed results and the results calculated directly from long marshaling simulation is close enough for engineering use. This demonstrates that the proposed novel approach for estimating aeroacoustics of long marshaling could not only reduce the computational cost significantly but also be as accurate as direct simulation. This paper might provide a handy tool for engineering practice in this region.
来源 力学学报 ,2019,51(5):1310-1320 【核心库】
DOI 10.6052/0459-1879-19-079
关键词 高速列车 ; 气动噪声 ; 非线性声学求解器 ; FW-H声比拟法 ; 长编组
地址

1. 中国科学院力学研究所, 中国科学院流固耦合系统力学重点实验室, 北京, 100190  

2. 北京理工大学宇航学院力学系, 北京, 100081

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 力学;一般工业技术;铁路运输
基金 中国科学院知识创新工程重要方向项目
文献收藏号 CSCD:6580935

参考文献 共 34 共2页

1.  Talotte C. Aerodynamic noise: A critical survey. Journal of Sound and Vibration,2000,231(3):549-562 被引 41    
2.  Mellet C. High speed train noise emission: Latest investigation of the aerodynamic/rolling noise contribution. Journal of sound and vibration,2006,293(3):535-546 被引 69    
3.  杨国伟. 高速列车的关键力学问题. 力学进展,2015,45:201507 被引 12    
4.  孙振旭. 国内高速列车气动噪声研究进展概述. 空气动力学学报,2018,36(3):29-41 被引 1    
5.  晋永荣. 日本新干线列车噪声声源分布及主动降噪实车试验研究综述. 现代信息科技,2019,3(3):176-177,179 被引 1    
6.  谭晓明. CIT500车外噪声源频谱分解模型的试验研究. 铁道学报,2017,39(7):32-37 被引 7    
7.  Yokoshima S. Combined e ects of highspeed railway noise and ground vibrations on annoyance. International Journal of Environmental Research & Public Health,2017,14(8):845 被引 1    
8.  Kitagawa T. Aerodynamic noise generated by shinkansen cars. Journal of Sound and Vibration,2000,231(3):913-924 被引 34    
9.  Suzuki M. Study on numerical optimization of cross-sectional panhead shape for high-speed train. Journal of Mechanical Systems for Transportation and Logistics,2008,1:100-110 被引 6    
10.  高阳. 高速列车头型近场与远场噪声预测. 同济大学学报:自然科学版,2019,47(1):124-129 被引 10    
11.  刘晓日. 车头长度对高速列车气动特性与声场特性影响的数值分析及降噪研究. 中国铁道科学,2018,39(5):88-96 被引 7    
12.  刘国庆. 车端风挡类型对高速列车气动噪声影响规律的研究. 噪声与振动控制,2018,38(2):87-90 被引 4    
13.  Zhu J Y. The e ect of a moving ground on the flow and aerodynamic noise behaviour of a simplified high-speed train bogie. International Journal of Rail Transportation,2017,5(2):110-125 被引 4    
14.  Zhang Y D. Investigation of the aeroacoustic behavior and aerodynamic noise of a high-speed train pantograph. Science China Technological Sciences,2017,60(4):75-89 被引 1    
15.  Sun X. Numerical modeling and investigation on aerodynamic noise characteristics of pantographs in high-speed trains. Complexity,2018(6):1-12 被引 1    
16.  刘加利. 高速列车受电弓气动噪声特性研究. 机械工程学报,2018,54(4):231-237 被引 10    
17.  董继蕾. 高速动车组受电弓气动噪声数值仿真分析. 噪声与振动控制,2018,38(s1):46-50 被引 2    
18.  刘加利. 高速列车车头的气动噪声数值分析. 铁道学报,2011,33(9):19-26 被引 32    
19.  肖友刚. 高速列车车头曲面气动噪声的数值预测. 中南大学学报,2008,39(6):1267-1272 被引 28    
20.  孙振旭. CRH3型高速列车气动噪声数值模拟研究. 北京大学学报,2012,48(5):701-711 被引 14    
引证文献 5

1 丁叁叁 中国高速列车研发与展望 力学学报,2021,53(1):35-50
被引 22

2 张卫华 高速列车服役模拟建模与计算方法研究 力学学报,2021,53(1):96-104
被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号