帮助 关于我们

返回检索结果

基于石墨烯/PEDOT:PSS复合材料制备的可穿戴柔性传感器
Flexible wearable sensor based on graphene/PEDOT:PSS composite material

查看参考文献24篇

赵木森 1,2,3   于海波 1,2   孙丽娜 3   周培林 1,2,4   邹旿昊 1,2,4   刘连庆 1,2  
文摘 随着智能设备的普及,可穿戴电子设备呈现出巨大的市场前景.电阻式柔性应变传感器因具备较高的灵敏度与良好的生物兼容性等优点使其成为受关注的电学传感器.本文基于溶液共混法,制备一种新型的石墨烯(GR)/PEDOT:PSS多组分混合墨水材料,用直写喷墨打印技术制备了“电阻式”柔性应变传感器.该传感器以聚酰亚胺(PI)柔性薄膜为基底材料,以GR/PEDOT:PSS多组分混合墨水为导电材料,通过直写喷墨打印技术在柔性基底上打印导电图形.实验利用SEM、电学测试平台等表征手段分析了不同的GR掺加量对复合墨水材料性能与打印工艺的影响.实验结果表明:采用乙醇超声分散的GR材料可有效分布在PEDOT:PSS中,进而改善其在导电聚合物中的分散性;提高打印速率可明显降低线宽;随着GR掺加量的增大,柔性传感器阻值逐渐降低,器件的灵敏度下降;由此推断出相对疏松、分散性较好的墨水材料更有利于灵敏度的提高;提高柔性传感器的深宽比,可显著提高传感器的灵敏度.当弯折角度为80°时,电阻变化率(R/R_0)最高为3.414,有望应用于柔性可穿戴设备新兴领域.
其他语种文摘 As a rapidly emerging field for the intelligent terminals, wearable electronic devices have present a huge market prospect. Flexible resistive strain sensor has become one of the most concerned electrical sensors owing to its attractive properties, such as high sensitivity and biocompatibility. In this paper, a novel graphene (GR)/PEDOT:PSS multi-component hybrid ink material was prepared based on solution blending method. A “resistive” flexible strain sensor was fabricated by direct-inkjet printing technology. Polyimide (PI) flexible film, and GR/PEDOT:PSS multi-component mixed ink were used as substrate and conductive material, respectively. The conductive patterns were printed on the flexible substrate by direct-inkjet-printing technology. The scanning electron microscope (SEM) and electrical test platform were used to characterize and analyze the effect of different graphene doping amounts on the performance and printing process of composite ink materials. The experimental results show that the GR material dispersed by ethanol can be effectively distributed in PEDOT:PSS, which improves its dispersibility in conductive polymer. The line width decreases as the print rate increases and the resistance and sensitivity of the flexible sensors are gradually decreased with the increase of GR doping amount. It can be concluded that the ink material with relatively loosened and dispersive property will be more conducive to improve the device sensitivity. The sensitivity of the flexible wearable sensor can be significantly improved with the increasing aspect ratio of the flexible sensor as well. The resistance change rate (R/R_0) is up to 3.414 when the bending angle was 80°, which makes the GR/PEDOT:PSS composite material based sensor promising to be applied in the emerging field of flexible wearable devices.
来源 中国科学. 技术科学 ,2019,49(7):851-860 【核心库】
DOI 10.1360/n092018-00429
关键词 柔性器件 ; 应变传感 ; 直写喷墨打印 ; 石墨烯 ; PEDOT:PSS
地址

1. 中国科学院沈阳自动化研究所, 机器人学国家重点实验室, 沈阳, 110016  

2. 中国科学院机器人与智能制造创新研究院, 沈阳, 110016  

3. 东北大学机械工程与自动化学院, 沈阳, 110819  

4. 中国科学院大学, 北京, 100101

语种 中文
文献类型 研究性论文
ISSN 1674-7259
学科 一般工业技术;自动化技术、计算机技术
基金 国家自然科学基金 ;  北京理工大学智能机器人与系统高精尖创新中心开放基金
文献收藏号 CSCD:6579418

参考文献 共 24 共2页

1.  李文博. 石墨烯基墨水的制备及其在印刷电子中的应用. 科技导报,2017,35:30-36 被引 3    
2.  钱鑫. 柔性可穿戴电子传感器研究进展. 化学学报,2016,74:565-575 被引 30    
3.  Pang C. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv Mater,2015,27:634-640 被引 46    
4.  邝旻翾. 喷墨打印高精度图案研究进展. 化学学报,2012,70:1889-1896 被引 9    
5.  Huang Z. Pyramid microstructure with single walled carbon nanotubes for flexible and transparent micro-pressure sensor with ultra-high sensitivity. Senss Actuat A-Phys,2017,266:345-351 被引 5    
6.  赵冬梅. 石墨烯/碳纳米管复合材料的制备及应用进展. 化学学报,2014,72:185-200 被引 43    
7.  Su M. Nanoparticle based curve arrays for multirecognition flexible electronics. Adv Mater,2016,28:1369-1374 被引 18    
8.  万思杰. 仿生石墨烯纳米复合材料及其在电子器件领域的应用. 科学通报,2017,62:3173-3200 被引 1    
9.  夏凯伦. 纳米碳材料在可穿戴柔性导电材料中的应用研究进展. 物理化学学报,2016,32:2427-2446 被引 21    
10.  Novoselov K S. Electric field effect in atomically thin carbon films. Science,2004,306:666-669 被引 3887    
11.  Li J. Efficient inkjet printing of graphene. Adv Mater,2013,25:3985-3992 被引 14    
12.  Secor E B. Inkjet printing of high conductivity, flexible graphene patterns. J Phys Chem Lett,2013,4:1347-1351 被引 28    
13.  Wu Z S. Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv Mater,2015,27:3669-3675 被引 20    
14.  Liu Z. Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv Mater,2016,28:2217-2222 被引 16    
15.  An B. Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing. Chem Commun,2016,52:10948-10951 被引 9    
16.  Huang P. 3D printing of carbon fiber-filled conductive silicon rubber. Mater Des,2018,142:11-21 被引 7    
17.  Kou H. Wireless flexible pressure sensor based on micro-patterned Graphene/PDMS composite. Senss Actuat A-Phys,2018,277:150-156 被引 7    
18.  Ahn B Y. Transparent conductive grids via direct writing of silver nanoparticle inks. Nanoscale,2011,3:2700-2702 被引 3    
19.  Jiang J. Inkjet printing: Fabrication of transparent multilayer circuits by inkjet printing (Adv. Mater. 7/2016). Adv Mater,2016,28:1523 被引 1    
20.  Kye M J. "Drop-on-textile" patternable aqueous PEDOT composite ink providing highly stretchable and wash-resistant electrodes for electronic textiles. Dyes Pigments,2018,155:150-158 被引 1    
引证文献 8

1 李仲明 基于3D打印技术制造柔性传感器研究进展 化工进展,2020,39(5):1835-1843
被引 4

2 张明艳 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能 复合材料学报,2020,37(5):1024-1032
被引 8

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号