帮助 关于我们

返回检索结果

激光干涉引力波空间阵列核心问题的综合讨论
Overall discussion on the key problems of a space-borne laser interferometer gravitational wave antenna

查看参考文献71篇

罗子人 1   张敏 2   靳刚 1,2 *  
文摘 空间激光干涉引力波探测计划,例如欧洲航天局主导和美国参加的LISA(Laser Interferometer Space Antenna)计划、中国的“太极”计划和“天琴”计划等,瞄准中低频段(0.1 mHz~1 Hz)的引力波波源.这个频段的引力波事件被认为具有更重要的天文学、宇宙学以及物理学意义,其典型的波源包括超大(和中等)质量黑洞双星的并合、极端(和中等)质量比黑洞双星的绕转、银河系内数以百万计的致密双星系统以及随机引力波背景等.
其他语种文摘 Unlike their ground-based counterparts, space-borne laser interferometer gravitational wave detection missions focus on the gravitational wave sources in the lower frequency band between 0.1 mHz and 1 Hz. Various gravitational wave sources in such a frequency band are believed to be of considerable interest in astronomy and cosmology. The typical gravitational wave sources of a space-borne laser interferometer gravitational wave antenna are the super (intermediate) mass black hole merger, extreme (intermediate) mass ratio in-spiral, galactic binaries of compact stars, and stochastic gravitational wave background. The gravitational wave sources within the 0.1 mHz-1 Hz frequency band can help us understand the mystery of the universe's structural formation, evolution of massive black holes and its harbored galaxies, nature of gravity near the horizon of these massive black holes, and history of the early universe beyond the cosmic microwave background. To design a mission to achieve the abovementioned scientific impacts, considerable attention should be paid to several issues, such as orbital design and arm-length choice. The success of a space-borne laser interferometer gravitational wave detection mission requires a pico-meter precision inter-satellite laser ranging interferometer system and a state-of-the-art drag-free control system because of the weakness of the gravitational wave signals. The inter-satellite laser ranging interferometer system comprises four subsystems: stable laser source, stable laser telescope, ultra-precise laser interferometer, and ultra-precise phasemeter. Techniques, such as arm-locking, time-delay interferometry, sideband scheme, differential wave-front sensing, and pointing control, should be employed to suppress the laser frequency noise, clock frequency noise, and laser pointing jitter noise. Additionally, the ultra-precise laser interferometer needs to integrate the following functionalities: laser acquisition, laser ranging, laser communication, and clock synchronization. Conversely, the drag-free control system has the following three components: inertial sensor, micro-thruster, and drag-free controller. The inertial sensor is used to sense the displacement between the spacecraft and proof mass and send the signal to the drag-free controller. Further, the controller commands the micro-thruster to push the spacecraft to maintain the proof mass' position centered at the electrostatic cage of the inertial sensor. The space laser interferometer gravitational wave antenna is also a highly complex system in debt of the high degree of coupling between a subsystem and the high confusion of the enormous quantity of signals. An end-to-end numerical simulator might be essential in helping us understand the problems of data analysis, optimization of the configuration of the spacecraft and payload, and optimization of the mission design to solve the problem caused by complexity and to enhance the scientific output. Additionally, a more careful investigation of the levels 1 and 2 data analyses investigating the scientific impacts of the gravitational wave sources is also needed. The key problems of the abovementioned space-borne laser interferometer gravitational wave detection missions are generally discussed. Moreover, a brief history of the space-borne laser interferometer gravitational wave detection missions, including LISA, which is the ESA-NASA joint space-borne gravitational wave antenna; Taiji, which is the space-borne gravitational wave mission proposed by the Chinese Academy of Sciences; and TianQin, which is a geocentric orbit space-borne gravitational wave mission raised by Sun Yat-sen University, is reviewed. Finally, the conclusions and future prospect of the Chinese space laser interferometer gravitational wave detection missions are outlined.
来源 科学通报 ,2019,64(24):2468-2474 【核心库】
DOI 10.1360/TB-2019-0055
关键词 空间激光干涉引力波探测计划 ; 低频段 ; 绕转
地址

1. 中国科学院力学研究所, 北京, 100190  

2. 中国科学院大学工程科学学院, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 0023-074X
学科 天文学
基金 中国科学院战略性先导科技专项 ;  中国科学院战略性先导科技专项
文献收藏号 CSCD:6574570

参考文献 共 71 共4页

1.  LISA Consortium. LISA: Laser Interferometer Space Antenna-A Proposal in Response to the ESA Call for L3 Mission Concepts,2018 被引 1    
2.  Hu W R. The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl Sci Rev,2017,4:685-686 被引 60    
3.  Luo J. TianQin: A space-borne gravitational wave detector. Class Quantum Gravity,2016,33:35010 被引 2    
4.  Sathyaprakash B S. Physics, astrophysics and cosmology with gravitational waves. Living Rev Relativ,2009,12:2 被引 26    
5.  Schutz B F. Gravitational wave astronomy. Class Quantum Gravity,1999,16:A131 被引 6    
6.  Cutler C. An overview of gravitational wave sources. Proceedings of the GR16 Conference on General Relativity and Gravitation,2002:72-111 被引 2    
7.  LIGO Scientific Collaboration. Observation of gravitational waves from a binary black hole merger. Phys Rev Lett,2016,116:061102 被引 11    
8.  罗子人. 空间激光干涉引力波探测. 力学进展,2013(4):415-447 被引 50    
9.  中国科学院空间领域战略研究组. 中国至2050年空间科技发展路线图,2009 被引 15    
10.  Wu Y L. Space Gravitational Wave Detection in China. Presentation on First eLISA Consortium Meeting, APC-Paris,2012 被引 1    
11.  Gong X F. Descope of the ALIA mission. J Phys: Conf Ser,2015,610:12011 被引 2    
12.  Cyranoski D. Chinese gravitational-wave hunt hits crunch time. Nat News,2016,531:150-151 被引 8    
13.  Bender P. LISA Pre-phase a Report,1998 被引 5    
14.  Jennrich O. NGO (New Gravitational wave Observatory) Assessment Study Report,2011 被引 1    
15.  Armano M. Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results. Phys Rev Lett,2016,116:231101 被引 16    
16.  Ligo Scientific Collaboration. GWTC-1: A New Catalog of Gravitational-wave Detections. LIGO O1&O_2 Catalog Summary,2018 被引 1    
17.  California Institute of Technology. LIGO and Virgo Resume Search for Ripples in Space and Time. LIGO News,2019 被引 1    
18.  Madau P. Massive black holes as population III remnants. Astrophys J,2001,551:L27-L30 被引 11    
19.  Gong X F. Laser interferometric gravitational wave detection in space and structure formation in the early universe. Chin Astron Astrophys,2015,39:411-446 被引 3    
20.  Barack L. Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes. Phys Rev D,2007,75:042003 被引 7    
引证文献 5

1 王璐钰 空间激光干涉仪激光抖动噪声抑制研究 中国光学(中英文),2021,14(6):1426-1434
被引 3

2 王坦 引力波探测中的噪声抑制技术综述 天文学进展,2022,40(4):556-574
被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号