帮助 关于我们

返回检索结果

中国太阳物理学研究进展
Recent research progress of solar physics in China

查看参考文献153篇

刘睿 1 *   陈耀 2   邓元勇 3   丁明德 4   季海生 5   林隽 6   田晖 7   汪毓明 1   汪景琇 8 *  
文摘 太阳物理学聚焦于距离我们最近,也是对我们最重要的恒星,处于天文学、行星科学、空间科学、等离子体物理学等学科的前沿交叉领域.很多基本科学问题的解决——宇宙天体磁场的起源、恒星磁活动周的演化规律和形成机制、恒星磁活动如何影响宜居环境和生命起源、如何预报太阳爆发活动以防止其对人类造成灾害性影响——都将得益于太阳物理学的突破性进展.近10年来,太阳物理学进入了多信使、全波段、全时域、高分辨、多尺度、多视角和高精度探测的时代,而最新发射的帕克太阳探针和即将发射的太阳轨道飞行器,将开启空间太阳探测的新纪元.我国首颗太阳探测卫星——先进天基太阳天文台将于2021年发射.在这重大变革的前夜,我们回顾和梳理了近10年来我国太阳物理学者在认知太阳磁场性质、低层大气精细结构和动力学,以及太阳爆发活动形成机理等方面的突出进步,并展望中国太阳物理学的发展和中国学者未来可能做出的贡献.
其他语种文摘 Solar physics focuses on the star that is not only closest but most important to us. The study of solar physics is one of the most active interdisciplinary frontiers of astronomy, planetary and space science, plasma physics, etc. The eventual solution of many fundamental scientific problems would greatly benefit from breakthroughs in solar physics, e.g., problems such as the origin of magnetic field in astronomical objects, the formation and evolutionary mechanisms of the stellar magnetic cycle, the impact of stellar magnetic activities on the habitability of planets and the origin of life, and the forecast of solar eruptions to guard against adverse space weather effects. In the last ten years, solar physics has stepped into an era of multi-messenger, full electromagnetic spectrum, full time-domain, high-resolution, multi-scale, multi-view and high-precision detection. A new era is looming on the horizon with two revolutionary missions, namely, Parker Solar Probe, which was launched in 2018 and will probe the solar corona from as close as 6 million kilometers to the Sun's surface, and Solar Orbiter, which will be launched in 2020 to image the Sun's polar regions for the first time. In China, the first space mission dedicated to the Sun, the Advanced Space Based Solar Observatory (ASO-S), will be launched in 2021, targeting the next solar cycle. In addition, the Advanced Ground Based Solar Observatory (ASO-G) has been incorporated within the framework of national planning; under construction are two important instruments for solar physics, MUSER (Mingantu Ultrawide Spectral Radioheliograph) and AIMS (Accurate Infrared Magnetic field measurements of the Sun). Embracing the upcoming advancement in observing the Sun, we review in this article the prominent progresses made by Chinese scholars in the last ten years, mainly in studying the solar magnetic field, fine structures and dynamics of the lower atmosphere, and solar eruptions. At the frontier of solar magnetism, we have made headway in predicting the solar cycle, understanding the magnetic topology and the evolution of magnetic helicity, and modeling the coronal magnetic field. At the frontier of fine structures and dynamics of the lower atmosphere, we have advanced the understanding of not only new phenomena, such as ultraviolet bursts, but also traditional subjects, such as sunspot light bridges, Ellerman bombs, as well as mass and energy transfer from the lower to higher atmosphere. At the frontier of solar eruptions, we have made progress in identifying the eruption progenitor, clarifying its formation, structure, and evolution toward eruption as well as the subsequent propagation and interaction in interplanetary space, and understanding various aspects and consequences of magnetic reconnection, a fundament plasma process in the universe. On the basis of the review, we look forward to the future development of solar physics in China and to the prospect of Chinese scholars making even more substantial contributions to the solar physics research.
来源 科学通报 ,2019,64(19):2011-2024 【核心库】
DOI 10.1360/N972019-00286
关键词 太阳物理 ; 太阳磁场 ; 太阳大气 ; 太阳活动 ; 空间天气
地址

1. 中国科学技术大学地球和空间科学学院, 合肥, 230026  

2. 山东大学空间科学研究院, 威海, 264209  

3. 中国科学院国家天文台, 北京, 100101  

4. 南京大学天文和空间科学学院, 南京, 210023  

5. 中国科学院紫金山天文台, 南京, 210034  

6. 中国科学院云南天文台, 昆明, 650216  

7. 北京大学地球与空间科学学院, 北京, 100871  

8. 中国科学院大学, 北京, 100049

语种 中文
文献类型 综述型
ISSN 0023-074X
学科 天文学
基金 国家自然科学基金 ;  中国科学院空间科学战略先导专项
文献收藏号 CSCD:6574515

参考文献 共 153 共8页

1.  Hale G E. On the probable existence of a magnetic field in sun-spots. Astrophys J,1908,28:315 被引 24    
2.  Sakurai T. Heating mechanisms of the solar corona. Proc Jpn Acad Ser B-Phys Biol Sci,2017,93:87-97 被引 1    
3.  Parker E N. Mass ejection and a brief history of the solar wind concept. Cosmic Winds and the Heliosphere,1997 被引 1    
4.  Gopalswamy N. History and development of coronal mass ejections as a key player in solar terrestrial relationship. Geosci Lett,2016,3:8 被引 1    
5.  Airapetian V S. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat Geosci,2016,9:452-455 被引 3    
6.  Zhao M. Magnetic non-potentiality on the quiet Sun and the filigree. Res Astron Astrophys,2009,9:933-944 被引 6    
7.  Zhou G. Solar intranetwork magnetic elements: Flux distributions. Sol Phys,2013,283:273-282 被引 3    
8.  Jin C L. The sun's small-scale magnetic elements in solar cycle 23. Astrophys J,2011,731:37 被引 7    
9.  Tan B. The mid-term and long-term solar quasi-periodic cycles and the possible relationship with planetary motions. Astrophys Space Sci,2013,343:511-521 被引 2    
10.  Jiang J. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophys J,2014,791:5 被引 6    
11.  Jiang J. The cause of the weak solar cycle 24. Astrophys J,2015,808:L28 被引 2    
12.  Jiang J. Predictability of the solar cycle over one cycle. Astrophys J,2018,863:159 被引 6    
13.  Hao J. Hemispheric helicity trend for solar cycle 24. Astrophys J,2011,733:L27 被引 7    
14.  Yang S. Evolution of relative magnetic helicity: Method of computation and its application to a simulated solar corona above an active region. Sol Phys,2013,283:369-382 被引 2    
15.  Zhang H. Magnetic helicity and energy spectra of a solar active region. Astrophys J,2014,784:L45 被引 1    
16.  Zhang M. Magnetic helicity of self-similar axisymmetric force-free fields. Astrophys J,2012,755:78 被引 6    
17.  Tan B. Microwave Zebra pattern structures in the X2.2 solar flare on 2011 February 15. Astrophys J,2012,744:166 被引 4    
18.  Qu Z Q. Spectro-imaging polarimetry of the local corona during solar eclipse. Sol Phys,2017,292:37 被引 3    
19.  Chen Y. Diagnosing the magnetic field structure of a coronal cavity observed during the 2017 total solar eclipse. Astrophys J,2018,856:21 被引 7    
20.  Jiang C. Extrapolation of the solar coronal magnetic field from SDO/HMI magnetogram by a CESE-MHD-NLFFF code. Astrophys J,2013,769:144 被引 5    
引证文献 4

1 陈鹏飞 螺环不稳定性对日冕物质抛射至关重要吗? 科学通报,2019,64(36):3830-3832
被引 0 次

2 王刚 基于FPGA的多轴步进电机控制系统 天文研究与技术,2020,17(2):185-190
被引 0 次

显示所有4篇文献

论文科学数据集

1. 2019-2022年大柴旦飞行试验太阳活动预报数据集

数据来源:
国家对地观测科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号