帮助 关于我们

返回检索结果

复杂多孔介质主流通道定量判识标准
Quantitative criteria for identifying main flow channels in complex porous media

查看参考文献29篇

李熙喆 1   卢德唐 2   罗瑞兰 1   孙玉平 1 *   沈伟军 3   胡勇 1   刘晓华 1   齐亚东 1   关春晓 1   郭辉 1  
文摘 为判识油气储集层中复杂多孔介质的主流通道类型,利用试井解释获取的综合渗透率与岩心测试(或测井解释)得到的基质渗透率的比值定义了“主流通道指数”,同时基于流量等效原理建立了相应的数学模型,提出了主流通道分类方法,实现了储集层流动通道类型的定量表征,并通过典型气藏实例分析验证了该方法的有效性。研究表明,“主流通道指数”能够定量划分流动通道类型:该指数小于3,基质孔隙为主要流动通道;该指数为3~20,流动通道以裂缝为主、基质孔隙为辅;该指数大于20可视裂缝为唯一渗流通道。典型气藏的动态分析显示,“主流通道指数”可用于评价多孔介质流动通道类型,进而指导气藏分类开发、规避气藏开发风险。
其他语种文摘 To identify the type of main flow channels of complex porous media in oil and gas reservoirs, the “main flow channel index” is defined as the ratio of comprehensive permeability obtained from well test to matrix permeability obtained from core analysis or well logging. Meanwhile, a mathematical model is established based on equivalent flow assumption, the classification method for main flow channels is put forward, and quantitative characterization of main flow channels is realized. The method has been verified by analysis of typical gas reservoirs. The study results show that the “main flow channel index” can quantitatively classify types of flow channels. If the index is less than 3, the matrix pore is the main flow channel; if the index is between 3 and 20, the fracture is the main flow channel and the matrix pore acts as the supplement one; if the index is more than 20, the fracture is the only seepage channel. The dynamic analysis of typical gas reservoirs shows that the “main flow channel index” can be used to identify the type of flow channel in complex porous media, guiding the classified development of gas reservoirs, and avoiding development risk.
来源 石油勘探与开发 ,2019,46(5):943-949 【核心库】
DOI 10.11698/ped.2019.05.13
关键词 多孔介质 ; 基质孔隙 ; 裂缝 ; 流动通道 ; 主流通道指数 ; 定量判识标准
地址

1. 中国石油勘探开发研究院, 河北, 廊坊, 065007  

2. 中国科学技术大学工程科学学院, 合肥, 230026  

3. 中国科学院力学研究所, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 1000-0747
学科 石油、天然气工业
文献收藏号 CSCD:6571165

参考文献 共 29 共2页

1.  Long J C S. Porous media equivalents for networks of discontinuous fractures. Water Resources Research,1982,18(3):645-658 被引 73    
2.  Berkowitz B. Characterizing flow and transport in fractured geological media: A review. Advances in Water Resources,2002,25(8/9/10/11/12):861-884 被引 48    
3.  Tsang Y W. Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium. Water Resources Research,1989,25(9):2076-2080 被引 5    
4.  Tsang C F. Flow channeling in heterogeneous fractured rocks. Reviews of Geophysics,1998,36(2):275-298 被引 12    
5.  Goc R L. An inverse problem methodology to identify flow channels in fractured media using synthetic steady-state head and geometrical data. Advances in Water Resources,2010,33(7):782-800 被引 2    
6.  Neretnieks I. Channeling effects in flow and transport in fractured rocks: Some recent observations and models. GEOVAL-87 International Symposium,1987 被引 1    
7.  Silliman S E. An interpretation of the difference between aperture estimates derived from hydraulic and tracer tests in a single fracture. Water Resources Research,1989,25(10):2275-2283 被引 3    
8.  Hestir K. Inverse hydrologic modeling using stochastic growth algorithms. Water Resources Research,1998,34(12):3335-3347 被引 1    
9.  Datta-Gupta A. Detailed characterization of a fractured limestone formation by use of stochastic inverse approaches. SPE Formation Evaluation,1995,10(3):133-140 被引 2    
10.  Ronayne M J. Identifying discrete geologic structures that produce anomalous hydraulic response: An inverse modeling approach. Water Resources Research,2008,44(8):1-16 被引 1    
11.  Kerrou J. Issues in characterizing heterogeneity and connectivity in non-multi Gaussian media. Advances in Water Resources,2008,31(1):147-159 被引 1    
12.  Day-Lewis F D. Time-lapse imaging of saline-tracer transport in fractured rock using difference-attenuation radar tomography. Water Resources Research,2003,39(10):1290 被引 3    
13.  Warren J E. Flow in heterogeneous porous media. SPE Journal,1961,1(3):153-169 被引 7    
14.  Guswa A J. On using the equivalent conductivity to characterize solute spreading in environments with low-permeability lenses. Water Resources Research,2002,38(8):7-14 被引 1    
15.  Amaefule J O. Enhanced reservoir description: Using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. SPE 26436,1993 被引 4    
16.  Al-Dhafeeri A M. Characteristics of high-permeability zones using core analysis and production logging data. Journal of Petroleum Science & Engineering,2007,55(1/2):18-36 被引 2    
17.  Guo G. Rock typing as an effective tool for permeability and water-saturation modeling: A case study in a clastic reservoir in the Oriente basin. SPE Reservoir Evaluation & Engineering,2007,10(6):730-739 被引 2    
18.  Rushing J A. Rock typing: Keys to understanding productivity in tight gas sands. SPE 114164,2008 被引 1    
19.  Abedini A. Statistical evaluation of reservoir rock type in a carbonate reservoir. SPE 152359,2011 被引 1    
20.  Tariq M. Reservoir characterization and modeling of a carbonate reservoir: Case study. SPE 161039,2012 被引 1    
引证文献 15

1 李伟 中国含油气盆地深层、超深层超压盖层成因及其与超大型气田的关系 天然气工业,2020,40(2):11-21
被引 13

2 李熙喆 中国超深层大气田高质量开发的挑战、对策与建议 天然气工业,2020,40(2):75-82
被引 10

显示所有15篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号