帮助 关于我们

返回检索结果

冷却速率对TC16钛合金显微组织和力学性能的影响
Effect of cooling rate on microstructure and mechanical properties of TC16 titanium alloy

查看参考文献32篇

张志强 1   董利民 1 *   胡明 1,2   雷晓飞 1   杨洋 3   杨锐 1  
文摘 利用XRD、SEM、TEM和力学试验机等手段分析不同冷却速率的TC16钛合金试样的相组成、显微组织和力学性能,并分析冷却速率对TC16钛合金显微组织和力学性能的影响。结果表明:TC16钛合金经800 ℃保温处理后,水淬和空冷试样均由α相、α″马氏体、ω相和β相组成,炉冷试样仅由α相和β相组成;水淬和空冷试样中的初生α相体积分数和晶粒尺寸都相近,均比炉冷试样的小。水淬和空冷试样的单向拉伸曲线上,出现双屈服现象;随着冷却速率的降低,TC16钛合金的屈服强度提高;水淬和空冷试样的抗拉强度相近,高于炉冷试样的;3种冷却速度试样的伸长率和断面收缩率相近,都具有优异的室温塑性。
其他语种文摘 The microstructure evolutions of the TC16 titanium alloy corresponding to different cooling rates at 800 ℃ were investigated by techniques of XRD, SEM and TEM. The tensile properties of each sample were finally evaluated. The results show that TC16 titanium alloy consists of primary α phase, α″ martensite, thermal ω phase and metastable β phase in both water quenching and air cooling samples, but only primary α phase and metastable β phase are identified in furnace cooled sample. The volume fraction and grain size of primary α phase in both water quenching and air cooling samples are nearly the same, which are smaller than that of furnace cooling one. The dual yielding phenomenon was observed on the engineering stress-strain curves of both water quenching and air cooling samples. With decreasing the cooling rate, the yield strength of TC16 titanium alloy increases. The ultimate tensile strength of water quenching and air cooling samples exhibits the same value which is larger than that of furnace cooling one. Although the slight difference on the tensile strength for three kinds of samples, the elongation and area reduction representing the ductility are nearly the same.
来源 中国有色金属学报 ,2019,29(7):1391-1398 【核心库】
DOI 10.19476/j.ysxb.1004.0609.2019.07.07
关键词 TC16钛合金 ; 冷却速率 ; 显微组织 ; 力学性能 ; 循环拉伸
地址

1. 中国科学院金属研究所, 沈阳, 110016  

2. 东北大学材料科学与工程学院, 沈阳, 110819  

3. 中国科学院福建物质结构研究所, 福州, 350002

语种 中文
文献类型 研究性论文
ISSN 1004-0609
学科 金属学与金属工艺
基金 中国科学院金属研究所创新基金资助项目
文献收藏号 CSCD:6568228

参考文献 共 32 共2页

1.  Banerjee D. Perspectives on titanium science and technology. Acta Materialia,2013,61:844-879 被引 276    
2.  Luetjering G. Titanium. 2nd ed,2007 被引 2    
3.  Moiseyev V N. Titanium alloys-Russian aircraft and aerospace applications,2006 被引 1    
4.  Semiatin S L. Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V. Metallurgical and Materials Transactions A,2003,34:2377-2386 被引 35    
5.  Semiatin S L. Alpha/beta heat treatment of a nonuniform microstructure. Metallurgical and Materials Transaction A,2007,38:910-921 被引 13    
6.  Ahmed T. Phase transformations during cooling in a+b titanium alloys. Materials Science and Engineering A,1998,243:206-211 被引 90    
7.  Kubiak K. Development of the microstructure and fatigue strength of two phase titanium alloys in the processes of forging and heat treatment. Journal of Materials Processing Technology,1998,78(1/3):117-121 被引 7    
8.  Gil F J. Formation of a-widmanstaetten structure: Effect of grain size and cooling rate on the widmanstaetten morphologies and on the mechanical properties in Ti6Al4V alloy. Journal of Alloys and Compounds,2001,329(1/2):142-152 被引 23    
9.  Jovanovic M T. The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti-6Al-4V alloy. Materials and Design,2006,27:192-199 被引 15    
10.  Afonso C R M. Influence of cooling rate on microstructure of Ti-Nb alloy for orthopedic implants. Materials Science and Engineering C,2007,27(4):908-913 被引 9    
11.  Hed. Influences of deformation strain, strain rate and cooling rate on the Burgers orientation relationship and variants morphology during b®a phase transformation in a near a titanium alloy. Materials Science and Engineering A,2012,549:20-29 被引 1    
12.  Gao X X. A study of epitaxial growth behaviors of equiaxed alpha phase at different cooling rates in near alpha titanium alloy. Acta Materialia,2017,122:298-309 被引 13    
13.  曾卫东. 冷速对TC11合金β加工显微组织和力学性能的影响. 金属学报,2002,38(12):1273-1276 被引 33    
14.  Zhu S. Effect of cooling rate on microstructure evolution during a/b heat treatment of TA15 titanium alloy. Materials Characterization,2012,70:101-110 被引 21    
15.  彭聪. 冷却速率对含Cu钛合金显微组织和性能的影响. 金属学报,2017,53(10):1377-1384 被引 4    
16.  崔霞. 冷却速率对TA15钛合金显微组织和性能的影响. 失效分析与预防,2016,11(4):208-211 被引 2    
17.  宋淼. 冷却速率对Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si合金组织及性能的影响. 中国有色金属学报,2010,20(S1):565-569 被引 4    
18.  徐戊矫. 退火温度和冷却速率对TC4钛合金组织和性能的影响. 稀有金属材料与工程,2016,45(11):2932-2936 被引 16    
19.  张庆玲. 航空用钛合金紧固件选材分析. 材料工程,2007,284:11-14 被引 26    
20.  张青来. 冷镦紧固件用Ti-3Al-5Mo-4.5V钛合金的微观组织及性能. 中国有色金属学报,2012,22(10):2756-2761 被引 2    
引证文献 5

1 赵少阳 Ti-28%Ta合金的拉伸性能 中国有色金属学报,2020,30(11):2570-2577
被引 1

2 赵少阳 Ti-60Ta合金快速凝固过程中的相变研究 稀有金属材料与工程,2022,51(3):934-939
被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号