帮助 关于我们

返回检索结果

An Overview of Intelligent Wireless Communications Using Deep Reinforcement Learning

查看参考文献79篇

Huang Yongming 1,2 *   Xu Chunmei 1,2   Zhang Cheng 1,2   Hua Meng 1,2   Zhang Zhengming 1,2  
文摘 Future wireless communication networks tend to be intelligentized to accomplish the missions that cannot be preprogrammed. In the new intelligent communication systems, optimizing the network performance has become a challenge due to the ever-increasing complexity of the network environment. New theories and technologies for intelligent wireless communications have obtained widespread attention, among which deep reinforcement learning (DRL) is an excellent machine learning technology. DRL has great potential in enhancing the intelligence of wireless communication systems while overcoming the above challenge. This paper presents a review on applications of DRL in intelligent wireless communications with focuses on millimeter wave (mmWave), intelligent caching and unmanned aerial vehicle (UAV) scenarios. We first introduce the concepts and basic principles of single/multi- agent DRL techniques. Then, we review the related works where DRL algorithms are used to address emerging issues in wireless communications. These issues include mmWave communication, intelligent caching, UAV aided communication, and handover/access control in HetNets. Finally, critical challenges and future research directions of applying DRL in intelligent wireless communications are outlined.
来源 Journal of Communications and Information Networks ,2019,4(2):15-29 【核心库】
DOI 10.23919/JCIN.2019.8917869
关键词 deep reinforcement learning ; multi-agent reinforcement learning ; intelligent wireless communications ; mmWave ; caching ; UAV
地址

1. School of Information Science and Engineering, Southeast University, Nanjing, 210096  

2. Purple Mountain Laboratories, Nanjing, 211111

语种 英文
文献类型 研究性论文
ISSN 2096-1081
学科 电子技术、通信技术
基金 the Research Project of Jiangsu Province ;  国家科技重大项目 ;  国家自然科学基金
文献收藏号 CSCD:6534046

参考文献 共 79 共4页

1.  Va V. Online learning for position-aided millimeter wave beam training. IEEE Access,2019,7:30507-30526 被引 4    
2.  Qiao J. Proactive caching for mobile video streaming in millimeter wave 5G networks. IEEE Transactions on Wireless Communications,2016,15(10):7187-7198 被引 4    
3.  Zang S. Managing vertical handovers in millimeter wave heterogeneous networks. IEEE Transactions on Communications,2019,67(2):1629-1644 被引 2    
4.  Thorndike E L. Animal intelligence: An experimental study of the associate processes in animals. American Psychologist,1998,53(10):1125-1127 被引 4    
5.  Krizhevsky A. ImageNet classification with deep convolutional neural networks. Communications of the ACM,2017,60(6):84-90 被引 2891    
6.  Ren S. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149 被引 1060    
7.  Dong C. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307 被引 379    
8.  Mnih V. Playing Atari with deep reinforcement learning. arXiv:1312.5602,2013 被引 81    
9.  Lillicrap T P. Continuous control with deep reinforcement learning. Computer Science,2015,8(6):A187 被引 29    
10.  Silver D. Mastering the game of go with deep neural networks and tree search. Nature,2016,529(7587):484-489 被引 674    
11.  Silver D. Deterministic policy gradient algorithms. International Conference on International Conference on Machine Learning,2014:387-395 被引 3    
12.  Schulman J. Proximal policy optimization algorithms. arXiv:1707.06347,2017 被引 79    
13.  Castaneda A O. Deep reinforcement learning variants of multi-agent learning algorithms,2016 被引 3    
14.  Lowe R. Multi-agent actor-critic for mixed cooperative-competitive environments. arXiv:1706.02275,2017 被引 9    
15.  Yang Y. Mean field multi-agent reinforcement learning. arXiv:1802.05438,2018 被引 2    
16.  Khan A. Scalable centralized deep multi-agent reinforcement learning via policy gradients. arXiv:1805.08776,2018 被引 1    
17.  Lin L J. Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning,1992,8(3/4):293-321 被引 29    
18.  Littman M L. Markov games as a framework for multi-agent reinforcement learning. Proceedings of the 11th International Conference on Machine Learning (ML-94),1994:157-163 被引 1    
19.  Busoniu L. A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),2008,38(2):156-172 被引 53    
20.  Osborne M J. An introduction to game theory,2009 被引 1    
引证文献 2

1 Yang Xiangyu Sparse Optimization for Green Edge AI Inference Journal of Communications and Information Networks,2020,5(1):1-15
被引 0 次

2 周翔 基于深度强化学习的微网优化运行综述 全球能源互联网,2023,6(3):240-257
被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号