帮助 关于我们

返回检索结果

空间引力波探测中的绝对距离测量及通信技术
Laser ranging and data communication for space gravitational wave detection

查看参考文献20篇

刘河山 1   高瑞弘 1,2   罗子人 1 *   靳刚 1,2  
文摘 空间引力波探测任务中,由于干涉臂臂长的巨大差异,激光频率不稳定噪声成为系统最大的噪声源之一.需采用Pound-Drever-Hall锁腔、锁臂和TDI(Time Delay Interferometer)技术三级联合,将此噪声压制到10~(-6) Hz~(1/2)量级,才能使得频率噪声低于散粒噪声.而实现TDI技术需要准确测量卫星间的绝对距离和星间通信.本文以空间引力波探测中的绝对距离测量和通信技术为背景,详细阐述此项技术的实现原理和方法.拟通过EOM(Electro-Optic Modulator)将测距伪随机码和通信码调制至主激光相位中,再传输至远端航天器.在远端航天器通过锁相环和延迟环组成的解调系统计算伪随机码的时间延迟,进而解析出卫星间的绝对距离和通信信息.相关结论可为未来的验证实验奠定理论和技术基础,同时为我国未来空间引力波探测的相关技术发展提供一定参考.
其他语种文摘 Due to the large unequal interferometer arm, laser frequency jitter noise is the dominant noise in space gravitational wave detection. This noise can be less than shot noise when the frequency jitter is suppressed below than 10~(-6) Hz~(1/2) through the combination of PDH(Pound-Drever-Hall), arm locking and TDI (Time Delay Interferometer) technologies. However, absolute ranging and laser communication are the preconditions of the TDI. In this paper, we discuss the principle and implementation of the absolute ranging and laser communication. The pseudo-random code and communication code are modulated by the EOM (Electro-Optic Modulator) into the phase of the main laser beam and then sent to the far satellite. The absolute distance and the message can be obtained through the PLL (Phase Lock Loop) and the DLL (Delay Lock Loop). The related conclusions can be regarded as the basis and principle for related experimentation and will give a de- sign reference for future space gravitational wave detection in our country.
来源 中国光学(中英文) ,2019,12(3):486-492 【核心库】
DOI 10.3788/co.20191203.0486
关键词 空间引力波探测 ; 绝对距离测量 ; 激光通信
地址

1. 中国科学院力学研究所, 中国科学院微重力重点实验室, 北京, 100190  

2. 中国科学院大学工程科学学院, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 2095-1531
学科 物理学;天文学
基金 中科院战略性先导科技专项(B)
文献收藏号 CSCD:6517060

参考文献 共 20 共1页

1.  Abbott B P. Observation of gravitational waves from a binary black hole merger. Physical Review Letters,2016,116(6):061102 被引 273    
2.  Abbott B P. Prospects for observing and localizing gravitational-wave transients with advanced LIGO, advanced virgo and KAGRA. Living Reviews in Relativity,2018,21(1):3 被引 8    
3.  Pitkin M. Gravitational wave detection by interferometry (ground and space). Living Reviews in Relativity,2011,14(1):5 被引 9    
4.  Gair J R. Testing general relativity with low-frequency, space-based gravitational-wave detectors. Iiving Reviews in Relativity,2013,16(1):7 被引 9    
5.  Binetruy P. Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions,cosmic strings and other sources. Journal of Cosmology and Astroparticle Physics,Institute of Physics (IOP),2012(6):27 被引 6    
6.  王智. 空间引力波探测计划-LISA系统设计要点. 中国光学,2015,8(6):980-987 被引 13    
7.  王智. 空间引力波探测望远镜初步设计与分析. 中国光学,2018,11(1):131-151 被引 19    
8.  Armano M. Sub-femto-g free fall for space-based gravitational wave observatories:LISA pathfinder results. Physical Review Letters,2016,116(23):231101 被引 16    
9.  Hu W R. The Taiji Program in Space for gravitational wave physics and the nature of gravity. National Science Review,2017,4(5):685-686 被引 60    
10.  Jin G. Program in space detection of gravitational wave in Chinese Academy of Sciences. Journal of Physics: Conference Series,2017,840(1):012009 被引 5    
11.  Luo J. TianQin:a space-borne gravitational wave detector. Classical and Quantum Grαvity,2016,33(3):035010 被引 117    
12.  罗子人. 空间激光干涉引力波探测. 力学进展,2013,43(4):415-447 被引 50    
13.  Gerberding O. Laser-frequency stabilization via a quasimonolithic mach-zehnder interferometer with arms of unequal length and balanced dc readout. Physical Review Applied,2017,7(2):024027 被引 1    
14.  Sheard B. LISA long-arm interferometry:an alternative frequency pre-stabilization system. Classical and Quantum Gravity,2010,27(8):084011 被引 2    
15.  Heinzel G. Auxiliary functions of the LISA laser link:ranging, clock noise transfer and data communication. Classical and Quantum Gravity,2011,28(9):094008 被引 5    
16.  Esteban J J. Experimental demonstration of weak-light laser ranging and data communication for USA. Optics Express,2011,19(17):15937-15946 被引 7    
17.  Pollack S E. A demonstration of LISA laser communication. Classical and Quantum Gravity,2006,23(12):42014213 被引 3    
18.  Tinto M. Time-delay interferometry. Living Reviews in Relativity,2014,17(1):6 被引 10    
19.  Sutton A. Laser ranging and communications for LISA. Optics Express,2010,18(20):20759-20773 被引 4    
20.  Joseesteban J. Ranging and phase measurement for LISA. Journal of Physics :Conference Series,2010,228(1):012045 被引 1    
引证文献 12

1 陈胜楠 大倍率离轴无焦四反光学系统设计 中国光学(中英文),2020,13(1):179-188
被引 6

2 王登峰 面向天基引力波探测的时间延迟干涉技术 中国光学(中英文),2021,14(2):275-288
被引 5

显示所有12篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号