帮助 关于我们

返回检索结果

饱和松散堆积体快速滑动的剪胀效应机制与过程模拟
Shear dilatancy mechanism and process simulation of rapid sliding of saturated loose deposits

查看参考文献26篇

何子露 1   刘威 2   何思明 2,3 *   闫帅星 2,4  
文摘 工程弃渣、地震滑坡堆积体等松散介质,在降雨条件下所形成的饱和松散堆积体具有更强的流动性,其运动速度、危害范围大大超过预期,其内在机制一直是国际学术界关注的热点问题。采用Iverson基于极限状态土力学原理构建的饱和堆积体剪胀模型,并整合到Savage-Hutter滑坡运动演进物理模型中,采用有限体积法求解滑坡运动学方程,实现了饱和松散堆积体运动演进全程模拟,最后以深圳滑坡为案例研究了滑坡运动成灾过程。结果表明:剪胀效应是导致饱和松散堆积体快速运动的主要原因,饱和松散堆积体的初始状态(孔隙比或固相体积分数)对其运动-堆积演化过程有决定性影响。
其他语种文摘 The saturated loose deposits formed by engineering waste and earthquake landslide deposits under rainfall conditions have strong mobility, their movement speeds are fast, and the damage scopes are larger than expected. Their internal mechanisms have always been a hot research issue in international academic circles. In this paper, the saturated deposit shear dilatancy model constructed by Iverson based on the limit state soil mechanics principle is integrated into the physical model of the Savage-Hutter slide motion physical model. The finite volume method is used to solve the landslide kinetic equations and achieve full simulation of the motion evolution of the saturated loose accumulation body. Finally, a back in-situ analysis of the catastrophic construction solid waste landslide that occurred in Shenzhen in December 2015 is presented and evolution process of the landslide is reproduced. The results show that the dilatancy effect is the main reason for rapid movement of the saturated loose accumulation bodies and the initial state (void ratio or volume fraction of solid phase) of the saturated loose deposit has a crucial influence on its motion-accumulation evolution process.
来源 岩土力学 ,2019,40(6):2389-2396 【核心库】
DOI 10.16285/j.rsm.2018.0407
关键词 饱和松散堆积体 ; 剪胀 ; 运动 ; 物理模型 ; 计算模拟
地址

1. 西南交通大学力学与工程学院, 四川, 成都, 610031  

2. 中国科学院成都山地灾害与环境研究所, 中国科学院山地灾害与地表过程重点实验室, 四川, 成都, 610041  

3. 中国科学院青藏高原研究所, 中国科学院青藏高原卓越中心, 北京, 100081  

4. 中国科学院大学, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 1000-7598
学科 地质学
基金 国家自然科学基金重大项目 ;  NSFC-ICIMOD国际合作基金项目 ;  四川省重点研发计划
文献收藏号 CSCD:6513538

参考文献 共 26 共2页

1.  Iverson R M. Debris-flow mobilization from landslides. Annual Review of Earth and Planetary Sciences,1997,25(1):85-138 被引 82    
2.  Fleming R W. Transformation of dilative and contractive landslide debris into debris flows: an example from Marin County, California. Engineering Geology,1989,27(1/4):201-223 被引 12    
3.  Iverson R M. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature Geoscience,2011,4(2):116-121 被引 39    
4.  Iverson R M. Modelling landslide liquefaction, mobility bifurcation and the dynamics of the2014 Oso disaster. Geotechnique,2015,66(3):175-187 被引 7    
5.  唐川. 汶川震区北川9.24暴雨泥石流特征研究. 工程地质学报,2008,16(6):751-758 被引 104    
6.  Tang C. Rainfall-triggered debris flows following the Wenchuan earthquake. Bulletin of Engineering Geology and the Environment,2009,68(2):187-194 被引 110    
7.  Ouyang C. Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake induced area. Engineering Geology,2015,194:62-72 被引 15    
8.  许强. 溃散性滑坡成因机理初探. 西南交通大学学报,2016,51(5):995-1004 被引 13    
9.  Ouyang C J. Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China. Landslides,2017,14(2):705-718 被引 17    
10.  殷跃平. 深圳“12· 20”渣土场灾难滑坡成灾机理与岩土工程风险控制研究. 工程,2016(2):230-249 被引 1    
11.  He S. Dynamic simulation of landslide based on thermo-poro-elastic approach. Computers & Geosciences,2015,75:24-32 被引 1    
12.  Lucas A. Frictional velocity-weakening in landslides on earth and on other planetary bodies. Nature Communications,2014,5:3417 被引 13    
13.  Liu W. Two-dimensional landslide dynamic simulation based on a velocity-weakening friction law. Landslides,2016,13(5):957-965 被引 5    
14.  Wang Y F. Velocity‐dependent frictional weakening of large rock avalanche basal facies: Implications for rock avalanche hypermobility?. Journal of Geophysical Research: Solid Earth,2017,122(3):1648-1676 被引 13    
15.  Gerolymos N. A model for grain-crushing-induced landslides: application to Nikawa, Kobe 1995. Soil Dynamics and Earthquake Engineering,2007,27(9):803-817 被引 1    
16.  Okada Y. Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests. Engineering Geology,2004,75(3/4):325-343 被引 9    
17.  Goren L. The long runout of the Heart Mountain landslide: heating, pressurization, and carbonate decomposition. Journal of Geophysical Research(Solid Earth),2010,115(B10) 被引 8    
18.  Bouchut F. A two-phase two-layer model for fluidized granular flows with dilatancy effects. Journal of Fluid Mechanics,2016,801:166-221 被引 3    
19.  Wood D M. Soil behaviour and critical state soil mechanics,1990 被引 49    
20.  Iverson R M. Acute sensitivity of landslide rates to initial porosity. Science,2000,290:513-516 被引 30    
引证文献 2

1 吴善百 初始干密度对桂东南降雨型花岗岩残积土滑坡起动模式的影响 山地学报,2020,38(6):881-893
被引 1

2 陈光波 断层破碎带垮冒堆积体空间尺寸及变形机制 地下空间与工程学报,2022,18(2):465-475
被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号