帮助 关于我们

返回检索结果

基于滑移速度壁模型的复杂边界湍流大涡模拟
LARGE-EDDY SIMULATION OF FLOWS WITH COMPLEX GEOMETRIES BY USING THE SLIP-WALL MODEL

查看参考文献47篇

时北极 1,2   何国威 1,2   王士召 1,2  
文摘 采用滑移速度壁模型实现了浸入边界方法与壁模型相结合的大涡模拟.本文首先分别采用平衡层模型和非平衡壁模型对周期山状流进行数值模拟,以考查在壁模型中考虑切向压力梯度的作用. 数值结果表明,流场的压力对本文所采用的壁模型形式并不敏感,但是考虑切向压力梯度可以显著改进壁面摩擦力的计算结果,并且能够准确的预测强压力梯度区以及分离区内的流动平均统计特性.不考虑压力梯度效应的平衡层模型显著低估了壁面摩擦力的分布,同时无法准确预测分离区内的平均速度剖面.非平衡模型的修正项正比于切向压力梯度和壁面法向距离,因此在强压力梯度区或者网格较粗时,计算得到的平均压力和摩擦力分布以及流动的低阶统计量均与参考的实验和计算结果吻合.在此基础上,通过回转体绕流的大涡模拟考查了该方法用于模拟高雷诺数壁湍流的适用性,非平衡壁模型可以准确地捕捉流动的物理结构并较准确地预测其水动力学特性.结果表明,将浸入边界方法与非平衡滑移速度壁模型相结合的大涡模拟,有望成为数值模拟复杂边界高雷诺数壁湍流的工具.
其他语种文摘 A slip-wall model is combined with the immersed boundary method for large-eddy simulation of flows with complex geometries. Firstly, large eddy simulation of flows over periodic hills are conducted to evaluate the effects of the tangential pressure gradient in wall model. Both the equilibrium stress balance model which based on the assumption of an equilibrium boundary-layer and the non-equilibrium wall model, in which the pressure gradient blend into the simplified thin boundary-layer equations and the RANS-like eddy viscosity in both the procedure of computing the wall-shear stress and reconstructing the wall-slip velocity, are utilized for comparison. The numerical results show that the pressure coefficient is not sensitive to the types of wall model which we considered, especially the strong pressure gradient in front of the hill crest is well catched by both models. However, when taking into account the tangential pressure gradient, the non-equilibrium wall model is superior to the equilibrium one for its ability to improve the prediction of the wall-shear stress and flow separation. When the equilibrium stress balance model is used, the wall-shear stress is heavily underpredicted and remarkable discrepancies of the mean velocity profiles can also be seen in the recirculation region. By comparison, the correction of the non-equilibrium wall model is proportional to both the tangential pressure gradient and the normal distance away from the wall, thus the hydrodynamic coefficients and the mean flow statistics are all in good agreement with the references even on very coarse grids. Secondly, large-eddy simulation of flow around an axisymmetric body is conducted to assess the applicability of current method when applied to high Reynolds number wall-bounded turbulent flows. The flow structures and the hydrodynamic characteristics are well predicted by the non-equilibrium wall model. This work confirms that the immersed boundary method in combination with the non-equilibrium slip-wall model is a possible and promising way to deal with turbulent flows which have complex geometries.
来源 力学学报 ,2019,51(3):754-766 【核心库】
DOI 10.6052/0459-1879-19-033
关键词 滑移速度壁模型 ; 浸入边界方法 ; 大涡模拟 ; 压力梯度 ; 周期山状流 ; 回转体绕流
地址

1. 中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190  

2. 中国科学院大学工程科学学院, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 力学
基金 国家自然科学基金 ;  中国科学院战略性先导科技专项 ;  中科院前沿科学重点研究计划 ;  国家973计划
文献收藏号 CSCD:6503639

参考文献 共 47 共3页

1.  林孟达. 飞机尾涡演变及快速预测的大涡模拟研究. 力学学报,2017,49(6):1185-1200 被引 17    
2.  冯峰. 高亚声速湍流喷流气动噪声数值分析. 力学学报,2016,48(5):1049-1060 被引 5    
3.  周磊. 大涡模拟在内燃机中应用的研究进展. 力学学报,2013,45(4):467-482 被引 6    
4.  安翼. 高速列车头型长细比对气动噪声的影响. 空气动力学学报,2017,49(5):985-996 被引 1    
5.  Choi H. Grid-point requirements for large eddy simulation: Chapman's estimates revisited. Physics of Fluids,2012,24(1):011702 被引 19    
6.  Larsson J. Large eddy simulation with modeled wall-stress: recent progress and future directions. Mechanical Engineering Reviews,2016,3(1):1-23 被引 9    
7.  肖志祥. 采用RANS/LES混合方法研究分离流动. 空气动力学学报,2006,24(2):218-222 被引 8    
8.  Piomelli U. Wall-layer models for large-eddy simulations. Annual Review of Fluid Mechanics,2002,34:349-374 被引 25    
9.  Piomelli U. Wall-layer models for large-eddy simulations. Progress in Aerospace Sciences,2008,44:437-446 被引 14    
10.  Bose A T. Wall-modeled large-eddy simulation for complex turbulent flows. Annual Review of Fluid Mechanics,2018,50:535-561 被引 14    
11.  Zhang Y F. Aeroacoustic prediction of a multi-element airfoil using wall-modeled large-eddy simulation. AIAA Journal,2017,55:4219-4233 被引 7    
12.  Chen S Y. Reynolds-stress-constrained largeeddy simulation of wall-bounded turbulent flows. Journal of Fluid Mechanics,2012,703:1-28 被引 14    
13.  尹光. 近壁湍流的降阶模型及其应用. 气体物理,2016,1(2):20-21 被引 1    
14.  张兆顺. 湍流大涡数值模拟的理论与应用,2008:194-196 被引 2    
15.  崔桂香. 湍流大涡数值模拟进展. 空气动力学学报,2004,22(2):121-129 被引 24    
16.  吴霆. 大涡模拟的壁模型及其应用. 力学学报,2018,50(3):453-466 被引 18    
17.  Cabot W. Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow, Turbulence and Combustion,1999,63:269-291 被引 2    
18.  Balaras E. Two-layer approximate boundary conditions for large-eddy simulations. AIAA Journal,1996,34:1111-1119 被引 7    
19.  Wang M. Dynamic wall modeling for large-eddy simulation of complex turbulent flows. Physics of Fluids,2002,14:2043 被引 7    
20.  Duprat C. A wall-layer model for large eddy simulations of turbulent flow with/out pressure gradient. Physics of Fluids,2011,23:015101 被引 6    
引证文献 10

1 史荣豪 基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测 力学学报,2020,52(2):369-378
被引 2

2 唐洋 深海浅层非成岩天然气水合物喷射破碎压控滑套的研制 天然气工业,2020,40(8):186-194
被引 1

显示所有10篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号